Nonlocal Modification of the Kerr Metric

In the present paper, we discuss a nonlocal modification of the Kerr metric. Our starting point is the Kerr–Schild form of the Kerr metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi...

Full description

Bibliographic Details
Main Authors: Valeri P. Frolov, Jose Pinedo Soto
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/9/1771
_version_ 1797576536895782912
author Valeri P. Frolov
Jose Pinedo Soto
author_facet Valeri P. Frolov
Jose Pinedo Soto
author_sort Valeri P. Frolov
collection DOAJ
description In the present paper, we discuss a nonlocal modification of the Kerr metric. Our starting point is the Kerr–Schild form of the Kerr metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>=</mo><msub><mi>η</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>+</mo><mo>Φ</mo><msub><mi>l</mi><mi>μ</mi></msub><msub><mi>l</mi><mi>μ</mi></msub></mrow></semantics></math></inline-formula>. Using Newman’s approach, we identify a shear free null congruence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">l</mi></semantics></math></inline-formula> with the generators of the null cone with apex at a point <i>p</i> in the complex space. The Kerr metric is obtained if the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> is chosen to be a solution of the flat Laplace equation for a point source at the apex <i>p</i>. To construct the nonlocal modification of the Kerr metric, we modify the Laplace operator <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>▵</mo></mrow></semantics></math> by its nonlocal version <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><msup><mo>ℓ</mo><mn>2</mn></msup><mo>▵</mo><mo>)</mo><mo>▵</mo></mrow></semantics></math></inline-formula>. We found the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> in such an infinite derivative (nonlocal) model and used it to construct the sought-for nonlocal modification of the Kerr metric. The properties of the rotating black holes in this model are discussed. In particular, we derived and numerically solved the equation for a shift of the position of the event horizon due to nonlocality. AlbertaThy 5–23.
first_indexed 2024-03-10T21:54:27Z
format Article
id doaj.art-517a8ee195414daa8c06e0b4ab23ea39
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T21:54:27Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-517a8ee195414daa8c06e0b4ab23ea392023-11-19T13:12:25ZengMDPI AGSymmetry2073-89942023-09-01159177110.3390/sym15091771Nonlocal Modification of the Kerr MetricValeri P. Frolov0Jose Pinedo Soto1Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, CanadaTheoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, CanadaIn the present paper, we discuss a nonlocal modification of the Kerr metric. Our starting point is the Kerr–Schild form of the Kerr metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>=</mo><msub><mi>η</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>+</mo><mo>Φ</mo><msub><mi>l</mi><mi>μ</mi></msub><msub><mi>l</mi><mi>μ</mi></msub></mrow></semantics></math></inline-formula>. Using Newman’s approach, we identify a shear free null congruence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">l</mi></semantics></math></inline-formula> with the generators of the null cone with apex at a point <i>p</i> in the complex space. The Kerr metric is obtained if the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> is chosen to be a solution of the flat Laplace equation for a point source at the apex <i>p</i>. To construct the nonlocal modification of the Kerr metric, we modify the Laplace operator <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>▵</mo></mrow></semantics></math> by its nonlocal version <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><msup><mo>ℓ</mo><mn>2</mn></msup><mo>▵</mo><mo>)</mo><mo>▵</mo></mrow></semantics></math></inline-formula>. We found the potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> in such an infinite derivative (nonlocal) model and used it to construct the sought-for nonlocal modification of the Kerr metric. The properties of the rotating black holes in this model are discussed. In particular, we derived and numerically solved the equation for a shift of the position of the event horizon due to nonlocality. AlbertaThy 5–23.https://www.mdpi.com/2073-8994/15/9/1771nonlocal gravityKerr metricblack holesKerr-Schild
spellingShingle Valeri P. Frolov
Jose Pinedo Soto
Nonlocal Modification of the Kerr Metric
Symmetry
nonlocal gravity
Kerr metric
black holes
Kerr-Schild
title Nonlocal Modification of the Kerr Metric
title_full Nonlocal Modification of the Kerr Metric
title_fullStr Nonlocal Modification of the Kerr Metric
title_full_unstemmed Nonlocal Modification of the Kerr Metric
title_short Nonlocal Modification of the Kerr Metric
title_sort nonlocal modification of the kerr metric
topic nonlocal gravity
Kerr metric
black holes
Kerr-Schild
url https://www.mdpi.com/2073-8994/15/9/1771
work_keys_str_mv AT valeripfrolov nonlocalmodificationofthekerrmetric
AT josepinedosoto nonlocalmodificationofthekerrmetric