RMOBF-Net: Network for the Restoration of Motion and Optical Blurred Finger-Vein Images for Improving Recognition Accuracy

Biometrics is a method of recognizing a person based on one or more unique physical and behavioral characteristics. Since each person has a different structure and shape, it is highly secure and more convenient than the existing security system. Among various biometric authentication methods, finger...

Full description

Bibliographic Details
Main Authors: Jiho Choi, Jin Seong Hong, Seung Gu Kim, Chanhum Park, Se Hyun Nam, Kang Ryoung Park
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/21/3948
Description
Summary:Biometrics is a method of recognizing a person based on one or more unique physical and behavioral characteristics. Since each person has a different structure and shape, it is highly secure and more convenient than the existing security system. Among various biometric authentication methods, finger-vein recognition has advantages in that it is difficult to forge because a finger-vein exists inside one’s finger and high user convenience because it uses a non-invasive device. However, motion and optical blur may occur for some reasons such as finger movement and camera defocusing during finger-vein recognition, and such blurring occurrences may increase finger-vein recognition error. However, there has been no research on finger-vein recognition considering both motion and optical blur. Therefore, in this study, we propose a new method for increasing finger-vein recognition accuracy based on a network for the restoration of motion and optical blurring in a finger-vein image (RMOBF-Net). Our proposed network continuously maintains features that can be utilized during motion and optical blur restoration by actively using residual blocks and feature concatenation. Also, the architecture RMOBF-Net is optimized to the finger-vein image domain. Experimental results are based on two open datasets, the Shandong University homologous multi-modal traits finger-vein database and the Hong Kong Polytechnic University finger-image database version 1, from which equal error rates of finger-vein recognition accuracy of 4.290–5.779% and 2.465–6.663% were obtained, respectively. Higher performance was obtained from the proposed method compared with that of state-of-the-art methods.
ISSN:2227-7390