Mathematical model of predator - prey system with lower critical prey density

A mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation...

Full description

Bibliographic Details
Main Authors: Yu. M. Aponin, E. A. Aponina
Format: Article
Language:Russian
Published: Institute of Computer Science 2009-03-01
Series:Компьютерные исследования и моделирование
Subjects:
Online Access:http://crm.ics.org.ru/uploads/kim1/crm09106.pdf
_version_ 1811220530115641344
author Yu. M. Aponin
E. A. Aponina
author_facet Yu. M. Aponin
E. A. Aponina
author_sort Yu. M. Aponin
collection DOAJ
description A mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation diagram in control-lable parameters plane is constructed and corresponding phase portraits are represented.
first_indexed 2024-04-12T07:43:15Z
format Article
id doaj.art-517fdabe010b48a583f7ceeb15e45f83
institution Directory Open Access Journal
issn 2076-7633
2077-6853
language Russian
last_indexed 2024-04-12T07:43:15Z
publishDate 2009-03-01
publisher Institute of Computer Science
record_format Article
series Компьютерные исследования и моделирование
spelling doaj.art-517fdabe010b48a583f7ceeb15e45f832022-12-22T03:41:46ZrusInstitute of Computer ScienceКомпьютерные исследования и моделирование2076-76332077-68532009-03-0111515610.20537/2076-7633-2009-1-1-51-561574Mathematical model of predator - prey system with lower critical prey densityYu. M. AponinE. A. AponinaA mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation diagram in control-lable parameters plane is constructed and corresponding phase portraits are represented.http://crm.ics.org.ru/uploads/kim1/crm09106.pdfpredator – prey systemecosystems dynamicsbifurcation theory
spellingShingle Yu. M. Aponin
E. A. Aponina
Mathematical model of predator - prey system with lower critical prey density
Компьютерные исследования и моделирование
predator – prey system
ecosystems dynamics
bifurcation theory
title Mathematical model of predator - prey system with lower critical prey density
title_full Mathematical model of predator - prey system with lower critical prey density
title_fullStr Mathematical model of predator - prey system with lower critical prey density
title_full_unstemmed Mathematical model of predator - prey system with lower critical prey density
title_short Mathematical model of predator - prey system with lower critical prey density
title_sort mathematical model of predator prey system with lower critical prey density
topic predator – prey system
ecosystems dynamics
bifurcation theory
url http://crm.ics.org.ru/uploads/kim1/crm09106.pdf
work_keys_str_mv AT yumaponin mathematicalmodelofpredatorpreysystemwithlowercriticalpreydensity
AT eaaponina mathematicalmodelofpredatorpreysystemwithlowercriticalpreydensity