Mathematical model of predator - prey system with lower critical prey density
A mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Institute of Computer Science
2009-03-01
|
Series: | Компьютерные исследования и моделирование |
Subjects: | |
Online Access: | http://crm.ics.org.ru/uploads/kim1/crm09106.pdf |
_version_ | 1811220530115641344 |
---|---|
author | Yu. M. Aponin E. A. Aponina |
author_facet | Yu. M. Aponin E. A. Aponina |
author_sort | Yu. M. Aponin |
collection | DOAJ |
description | A mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation diagram in control-lable parameters plane is constructed and corresponding phase portraits are represented. |
first_indexed | 2024-04-12T07:43:15Z |
format | Article |
id | doaj.art-517fdabe010b48a583f7ceeb15e45f83 |
institution | Directory Open Access Journal |
issn | 2076-7633 2077-6853 |
language | Russian |
last_indexed | 2024-04-12T07:43:15Z |
publishDate | 2009-03-01 |
publisher | Institute of Computer Science |
record_format | Article |
series | Компьютерные исследования и моделирование |
spelling | doaj.art-517fdabe010b48a583f7ceeb15e45f832022-12-22T03:41:46ZrusInstitute of Computer ScienceКомпьютерные исследования и моделирование2076-76332077-68532009-03-0111515610.20537/2076-7633-2009-1-1-51-561574Mathematical model of predator - prey system with lower critical prey densityYu. M. AponinE. A. AponinaA mathematical model of predator - prey microecosystem with lower critical population number of prey is considered. The predator - prey system is assumed to be under harvesting. Harvesting intensity variations generate changes in two model parameters which are considered as controllable. Bifurcation diagram in control-lable parameters plane is constructed and corresponding phase portraits are represented.http://crm.ics.org.ru/uploads/kim1/crm09106.pdfpredator – prey systemecosystems dynamicsbifurcation theory |
spellingShingle | Yu. M. Aponin E. A. Aponina Mathematical model of predator - prey system with lower critical prey density Компьютерные исследования и моделирование predator – prey system ecosystems dynamics bifurcation theory |
title | Mathematical model of predator - prey system with lower critical prey density |
title_full | Mathematical model of predator - prey system with lower critical prey density |
title_fullStr | Mathematical model of predator - prey system with lower critical prey density |
title_full_unstemmed | Mathematical model of predator - prey system with lower critical prey density |
title_short | Mathematical model of predator - prey system with lower critical prey density |
title_sort | mathematical model of predator prey system with lower critical prey density |
topic | predator – prey system ecosystems dynamics bifurcation theory |
url | http://crm.ics.org.ru/uploads/kim1/crm09106.pdf |
work_keys_str_mv | AT yumaponin mathematicalmodelofpredatorpreysystemwithlowercriticalpreydensity AT eaaponina mathematicalmodelofpredatorpreysystemwithlowercriticalpreydensity |