Summary: | Successful ways of fully exploiting the excellent structural and multifunctional performance of graphene and related materials are of great scientific and technological interest. New opportunities are provided by the fabrication of a novel class of nanocomposites with a nanolaminate architecture. In this work, by using the iterative lift-off/float-on process combined with wet depositions, we incorporated cm-size graphene monolayers produced via Chemical Vapour Deposition into a poly (methyl methacrylate) (PMMA) matrix with a controlled, alternate-layered structure. The produced nanolaminate shows a significant improvement in mechanical properties, with enhanced stiffness, strength and toughness, with the addition of only 0.06 vol% of graphene. Furthermore, oxygen and carbon dioxide permeability measurements performed at different relative humidity levels, reveal that the addition of graphene leads to significant reduction of permeability, compared to neat PMMA. Overall, we demonstrate that the produced graphene–PMMA nanolaminate surpasses, in terms of gas barrier properties, the traditional discontinuous graphene–particle composites with a similar filler content. Moreover, we found that the gas permeability through the nanocomposites departs from a monotonic decrease as a function of relative humidity, which is instead evident in the case of the pure PMMA nanolaminate. This work suggests the possible use of Chemical Vapour Deposition graphene–polymer nanolaminates as a flexible gas barrier, thus enlarging the spectrum of applications for this novel material.
|