Constitutive Expression of the Xylanase Inhibitor TAXI-III Delays Fusarium Head Blight Symptoms in Durum Wheat Transgenic Plants

Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants const...

Full description

Bibliographic Details
Main Authors: Ilaria Moscetti, Silvio Tundo, Michela Janni, Luca Sella, Katia Gazzetti, Alexandra Tauzin, Thierry Giardina, Stefania Masci, Francesco Favaron, Renato D'Ovidio
Format: Article
Language:English
Published: The American Phytopathological Society 2013-12-01
Series:Molecular Plant-Microbe Interactions
Online Access:https://apsjournals.apsnet.org/doi/10.1094/MPMI-04-13-0121-R
Description
Summary:Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.
ISSN:0894-0282
1943-7706