Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions

The influence of carbon nanotube (CNT) dispersions on the electrical properties and noise signal amplitude of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O&l...

Full description

Bibliographic Details
Main Authors: Usha Philipose, Chris Littler, Yan Jiang, Alia Naciri, Michael Harcrow, A. J. Syllaios
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/4/1534
_version_ 1797619603314049024
author Usha Philipose
Chris Littler
Yan Jiang
Alia Naciri
Michael Harcrow
A. J. Syllaios
author_facet Usha Philipose
Chris Littler
Yan Jiang
Alia Naciri
Michael Harcrow
A. J. Syllaios
author_sort Usha Philipose
collection DOAJ
description The influence of carbon nanotube (CNT) dispersions on the electrical properties and noise signal amplitude of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films is investigated. For a critical range of the CNT dispersion density on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films, the intrinsic properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films are modified by the CNTs. The CNT concentrations reported in this work are about 0.3 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> and 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>, allowing for low density and high density dispersions on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film surface to be investigated. These values are higher than the percolation threshold of about 0.12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> for these films. The composite film exhibits a significant reduction in the temperature coefficient of resistance (TCR) (from ≈3.8% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to ≈0.3% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) for high density dispersions. In contrast, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>–CNT composites with low density single wall CNT dispersions exhibit no significant change in TCR values, an approximate two orders of magnitude reduction in the low frequency 1/f noise is measured. The noise signal amplitude measured at 0.1 V and at 1.0 Hz reduces from 6 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films to 5 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for the low density SWCNT dispersion on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film and to 3 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for the low density MWCNT dispersion on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film. The CNT concentration is the critical factor for yielding the observed changes in conductivity and low frequency noise. The results presented in this work provide a better understanding of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>-based composites, thereby enabling the development of new, versatile and functional materials for device applications.
first_indexed 2024-03-11T08:29:20Z
format Article
id doaj.art-51987506f5b548d08446c99e4e521332
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-11T08:29:20Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-51987506f5b548d08446c99e4e5213322023-11-16T21:51:06ZengMDPI AGMaterials1996-19442023-02-01164153410.3390/ma16041534Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube DispersionsUsha Philipose0Chris Littler1Yan Jiang2Alia Naciri3Michael Harcrow4A. J. Syllaios5Department of Physics, University of North Texas, Denton, TX 76203, USADepartment of Physics, University of North Texas, Denton, TX 76203, USADepartment of Physics, University of North Texas, Denton, TX 76203, USADepartment of Physics, University of North Texas, Denton, TX 76203, USADepartment of Physics, University of North Texas, Denton, TX 76203, USADepartment of Physics, University of North Texas, Denton, TX 76203, USAThe influence of carbon nanotube (CNT) dispersions on the electrical properties and noise signal amplitude of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films is investigated. For a critical range of the CNT dispersion density on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films, the intrinsic properties of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films are modified by the CNTs. The CNT concentrations reported in this work are about 0.3 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> and 1.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>, allowing for low density and high density dispersions on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film surface to be investigated. These values are higher than the percolation threshold of about 0.12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> for these films. The composite film exhibits a significant reduction in the temperature coefficient of resistance (TCR) (from ≈3.8% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to ≈0.3% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) for high density dispersions. In contrast, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>–CNT composites with low density single wall CNT dispersions exhibit no significant change in TCR values, an approximate two orders of magnitude reduction in the low frequency 1/f noise is measured. The noise signal amplitude measured at 0.1 V and at 1.0 Hz reduces from 6 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> films to 5 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for the low density SWCNT dispersion on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film and to 3 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><msqrt><mo>(</mo></msqrt><mrow><mi>H</mi><mi>z</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for the low density MWCNT dispersion on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> film. The CNT concentration is the critical factor for yielding the observed changes in conductivity and low frequency noise. The results presented in this work provide a better understanding of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>-based composites, thereby enabling the development of new, versatile and functional materials for device applications.https://www.mdpi.com/1996-1944/16/4/1534vanadium oxidecarbon nanotubesnoisedispersion densitytemperature coefficient of resistancebolometers
spellingShingle Usha Philipose
Chris Littler
Yan Jiang
Alia Naciri
Michael Harcrow
A. J. Syllaios
Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
Materials
vanadium oxide
carbon nanotubes
noise
dispersion density
temperature coefficient of resistance
bolometers
title Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
title_full Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
title_fullStr Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
title_full_unstemmed Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
title_short Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
title_sort analyzing the bolometric performance of vanadium oxide thin films modified by carbon nanotube dispersions
topic vanadium oxide
carbon nanotubes
noise
dispersion density
temperature coefficient of resistance
bolometers
url https://www.mdpi.com/1996-1944/16/4/1534
work_keys_str_mv AT ushaphilipose analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions
AT chrislittler analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions
AT yanjiang analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions
AT alianaciri analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions
AT michaelharcrow analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions
AT ajsyllaios analyzingthebolometricperformanceofvanadiumoxidethinfilmsmodifiedbycarbonnanotubedispersions