Summary: | The paper presents and discusses the results of experimental and computational studies obtained by the authors on hydrodynamics and heat exchange in fuel assemblies of the alkali liquid metal cooled fast reactor cores, and experimental data on hydrodynamics of flow paths in the heat exchanger and reactor header systems. Investigation results are presented on in-tank coolant circulation obtained using a well-developed theory of approximation simulation of the nonisothermic coolant velocity and temperature fields in the fast neutron reactor primary circuit and demonstrating stable stratification and thermal fluctuations in the coolant. Results are presented from experimental and computational simulation of the alkali liquid metal boiling process based on fuel assembly models during an emergency situation caused by an operational occurrence involving simultaneous loss of power for all reactor coolant pumps and the reactor scram rod failure. Objectives are formulated for further studies, achieving which is essential for the evolution of the liquid metal technology, as dictated by the need for the improved safety, environmental friendliness, reliability and longer service life of nuclear power facilities currently in operation and in the process of development.
|