Node Label Classification Algorithm Based on Structural Depth Network Embedding Model

In the era of Internet,where massive data is growing explosively,traditional algorithms have been unable to meet the needs of processing large-scale and multi type data.In recent years,the latest graph embedding algorithm has achieved excellent results in link prediction,network reconstruction and n...

Full description

Bibliographic Details
Main Author: CHEN Shi-cong, YUAN De-yu, HUANG Shu-hua, YANG Ming
Format: Article
Language:zho
Published: Editorial office of Computer Science 2022-03-01
Series:Jisuanji kexue
Subjects:
Online Access:https://www.jsjkx.com/fileup/1002-137X/PDF/1002-137X-2022-3-105.pdf
Description
Summary:In the era of Internet,where massive data is growing explosively,traditional algorithms have been unable to meet the needs of processing large-scale and multi type data.In recent years,the latest graph embedding algorithm has achieved excellent results in link prediction,network reconstruction and node classification by learning graph network characteristics.Based on the traditional automatic encoder model,a new algorithm combining Sdne algorithm and link prediction similarity matrix is proposed.By introducing a high-order loss function in the process of back-propagation,the performance is adjusted according to the new characteristics of the auto-encoder.The disadvantages of traditional algorithm in determining node similarity in a single way are improved.A simple model is established to analyze and prove the rationality of the optimization.Compared with the most effective Sdne algorithm in the latest research,the improvement effect of this algorithm on Micro-F1 and Macro-F1 two evaluation indicators is close to 1%,and the visual classification effect is good.At the same time,it is found that the optimal value of the hyperparameter of the higher-order loss function is approximately in the range of 1~10,and the change of the numerical value can basically maintain the robustness of the whole network.
ISSN:1002-137X