Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite

The titanium dioxide-metal-organic framework (TiO2−MOF) composite was prepared using the sol-gel method for photovoltaic applications. Raman analyses showed the presence of MOF clusters in the TiO2 sol-gel network. Using the Brunauer-Emmett-Teller method, the resultant composite material exhibited a...

Full description

Bibliographic Details
Main Authors: Phuti S. Ramaripa, Kwena D. Modibane, Katlego Makgopa, Ostar A. Seerane, Manoko S. Maubane-Nkadimeng, Edwin Makhado, Mpitloane J. Hato, Morongwa E. Ramoroka, Kerileng M. Molapo, Deepanraj Balakrishnan, Emmanuel I. Iwuoha
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Journal of Photochemistry and Photobiology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666469022000355
_version_ 1811202155117281280
author Phuti S. Ramaripa
Kwena D. Modibane
Katlego Makgopa
Ostar A. Seerane
Manoko S. Maubane-Nkadimeng
Edwin Makhado
Mpitloane J. Hato
Morongwa E. Ramoroka
Kerileng M. Molapo
Deepanraj Balakrishnan
Emmanuel I. Iwuoha
author_facet Phuti S. Ramaripa
Kwena D. Modibane
Katlego Makgopa
Ostar A. Seerane
Manoko S. Maubane-Nkadimeng
Edwin Makhado
Mpitloane J. Hato
Morongwa E. Ramoroka
Kerileng M. Molapo
Deepanraj Balakrishnan
Emmanuel I. Iwuoha
author_sort Phuti S. Ramaripa
collection DOAJ
description The titanium dioxide-metal-organic framework (TiO2−MOF) composite was prepared using the sol-gel method for photovoltaic applications. Raman analyses showed the presence of MOF clusters in the TiO2 sol-gel network. Using the Brunauer-Emmett-Teller method, the resultant composite material exhibited a surface area of 111.10 m2 g−1 as compared to the surface area values of 262.90 and 464.76 m2 g−1 for TiO2 and MOF, respectively. The small optical band gap values of 2.63 for direct electronic transition and 2.70 eV for indirect allowed electronic transition in TiO2/MOF composite were observed using ultraviolet-visible supported by cyclic voltammetry (CV). The chronoamperometry (CA) results showed the current drop of 0.21 mA observed at 0.025 s for TiO2 and the current drop of1.00 mA for MOF and 1.4 mA for TiO2−MOF composite at 0.3 s. The stability of the composite was achieved through the synergistic effect of MOF on TiO2 which resulted in a high current density. Electrochemical impedance spectroscopy showed a fast electron transfer as well as high ionic conductivity. The overall power conversion efficiency of 0.722% along with a photocurrent density of 0.46 mA cm−2 was achieved for the composite. The approach proposed in this work is facile and can be used for the large-scale fabrication of efficient and flexible photoanode electrodes for photovoltaic applications.
first_indexed 2024-04-12T02:35:27Z
format Article
id doaj.art-51c12d985dcd48bda81003dd18d0a77b
institution Directory Open Access Journal
issn 2666-4690
language English
last_indexed 2024-04-12T02:35:27Z
publishDate 2022-12-01
publisher Elsevier
record_format Article
series Journal of Photochemistry and Photobiology
spelling doaj.art-51c12d985dcd48bda81003dd18d0a77b2022-12-22T03:51:36ZengElsevierJournal of Photochemistry and Photobiology2666-46902022-12-0112100142Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework compositePhuti S. Ramaripa0Kwena D. Modibane1Katlego Makgopa2Ostar A. Seerane3Manoko S. Maubane-Nkadimeng4Edwin Makhado5Mpitloane J. Hato6Morongwa E. Ramoroka7Kerileng M. Molapo8Deepanraj Balakrishnan9Emmanuel I. Iwuoha10Nanotechnology Research Group, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), 0727 Polokwane, Sovenga, South AfricaNanotechnology Research Group, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), 0727 Polokwane, Sovenga, South Africa; Corresponding author.Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), 0001 Pretoria, South AfricaDepartment of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), 0001 Pretoria, South AfricaDSI-NRF Centre of Excellence in Strong Materials, School of Chemistry, University of Witwatersrand, Private Bag X3, Wits, 2050, Johannesburg, South AfricaNanotechnology Research Group, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), 0727 Polokwane, Sovenga, South AfricaNanotechnology Research Group, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), 0727 Polokwane, Sovenga, South AfricaSensorLab, Chemical Science Department, University of the Western Cape, 7535,Bellville, Cape Town, South AfricaSensorLab, Chemical Science Department, University of the Western Cape, 7535,Bellville, Cape Town, South AfricaDepartment of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, 31952, Al-Khobar, Saudi ArabiaSensorLab, Chemical Science Department, University of the Western Cape, 7535,Bellville, Cape Town, South AfricaThe titanium dioxide-metal-organic framework (TiO2−MOF) composite was prepared using the sol-gel method for photovoltaic applications. Raman analyses showed the presence of MOF clusters in the TiO2 sol-gel network. Using the Brunauer-Emmett-Teller method, the resultant composite material exhibited a surface area of 111.10 m2 g−1 as compared to the surface area values of 262.90 and 464.76 m2 g−1 for TiO2 and MOF, respectively. The small optical band gap values of 2.63 for direct electronic transition and 2.70 eV for indirect allowed electronic transition in TiO2/MOF composite were observed using ultraviolet-visible supported by cyclic voltammetry (CV). The chronoamperometry (CA) results showed the current drop of 0.21 mA observed at 0.025 s for TiO2 and the current drop of1.00 mA for MOF and 1.4 mA for TiO2−MOF composite at 0.3 s. The stability of the composite was achieved through the synergistic effect of MOF on TiO2 which resulted in a high current density. Electrochemical impedance spectroscopy showed a fast electron transfer as well as high ionic conductivity. The overall power conversion efficiency of 0.722% along with a photocurrent density of 0.46 mA cm−2 was achieved for the composite. The approach proposed in this work is facile and can be used for the large-scale fabrication of efficient and flexible photoanode electrodes for photovoltaic applications.http://www.sciencedirect.com/science/article/pii/S2666469022000355ElectrochemistryMetal-organic frameworksCompositeTitanium dioxidePhotovoltaic studies
spellingShingle Phuti S. Ramaripa
Kwena D. Modibane
Katlego Makgopa
Ostar A. Seerane
Manoko S. Maubane-Nkadimeng
Edwin Makhado
Mpitloane J. Hato
Morongwa E. Ramoroka
Kerileng M. Molapo
Deepanraj Balakrishnan
Emmanuel I. Iwuoha
Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
Journal of Photochemistry and Photobiology
Electrochemistry
Metal-organic frameworks
Composite
Titanium dioxide
Photovoltaic studies
title Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
title_full Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
title_fullStr Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
title_full_unstemmed Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
title_short Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite
title_sort fabrication characterization and photovoltaic performance of titanium dioxide metal organic framework composite
topic Electrochemistry
Metal-organic frameworks
Composite
Titanium dioxide
Photovoltaic studies
url http://www.sciencedirect.com/science/article/pii/S2666469022000355
work_keys_str_mv AT phutisramaripa fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT kwenadmodibane fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT katlegomakgopa fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT ostaraseerane fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT manokosmaubanenkadimeng fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT edwinmakhado fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT mpitloanejhato fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT morongwaeramoroka fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT kerilengmmolapo fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT deepanrajbalakrishnan fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite
AT emmanueliiwuoha fabricationcharacterizationandphotovoltaicperformanceoftitaniumdioxidemetalorganicframeworkcomposite