Argyres-Douglas theories, Painlevé II and quantum mechanics
Abstract We show in details that the all order genus expansion of the two-cut Hermitian cubic matrix model reproduces the perturbative expansion of the H 1 Argyres-Douglas theory coupled to the Ω background. In the self-dual limit we use the Painlevé/gauge correspondence and we show that, after summ...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-02-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP02(2019)060 |
Summary: | Abstract We show in details that the all order genus expansion of the two-cut Hermitian cubic matrix model reproduces the perturbative expansion of the H 1 Argyres-Douglas theory coupled to the Ω background. In the self-dual limit we use the Painlevé/gauge correspondence and we show that, after summing over all instanton sectors, the two-cut cubic matrix model computes the tau function of Painlevé II without taking any double scaling limit or adding any external fields. We decode such solution within the context of transseries. Finally in the Nekrasov-Shatashvili limit we connect the H 1 and the H 0 Argyres-Douglas theories to the quantum mechanical models with cubic and double well potentials. |
---|---|
ISSN: | 1029-8479 |