Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators
Kinematic control of redundant serial manipulators has been carried out for the past half century based primarily on a generalized inverse velocity formulation that is known to have mathematical deficiencies. A recently developed inverse kinematic configuration mapping is employed in an operational...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Machines |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1702/12/1/10 |
Summary: | Kinematic control of redundant serial manipulators has been carried out for the past half century based primarily on a generalized inverse velocity formulation that is known to have mathematical deficiencies. A recently developed inverse kinematic configuration mapping is employed in an operational configuration space differentiable manifold formulation for redundant-manipulator kinematic control with obstacle avoidance. This formulation is shown to resolve deficiencies in the generalized inverse velocity formulation, especially for high-degree-of-redundancy manipulators. Tracking a specified output trajectory while avoiding obstacles for four- and twenty-degree-of-redundancy manipulators is carried out to demonstrate the effectiveness of the differentiable manifold approach for applications with a high degree of redundancy and to show that it indeed resolves deficiencies of the conventional generalized inverse velocity formulation in challenging applications. |
---|---|
ISSN: | 2075-1702 |