Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis
Tuberculosis is still one of the most severe progressive diseases; it severely limits the social and economic development of many countries. In the present study, the topic trend of scientific publications on tuberculosis has been examined using text mining techniques and co-word analysis with an an...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2022-01-01
|
Series: | Tuberculosis Research and Treatment |
Online Access: | http://dx.doi.org/10.1155/2022/8039046 |
_version_ | 1811189321592471552 |
---|---|
author | Meisam Dastani Alireza Mohammadzadeh Jalal Mardaneh Reza Ahmadi |
author_facet | Meisam Dastani Alireza Mohammadzadeh Jalal Mardaneh Reza Ahmadi |
author_sort | Meisam Dastani |
collection | DOAJ |
description | Tuberculosis is still one of the most severe progressive diseases; it severely limits the social and economic development of many countries. In the present study, the topic trend of scientific publications on tuberculosis has been examined using text mining techniques and co-word analysis with an analytical approach. The statistical population of the study is all global publications related to tuberculosis. In order to extract the data, the Scopus citation database was used for the period 1900 to 2022. The main keywords for the search strategy were chosen through consultation with thematic specialists and using MESH. Python programming language and VOSviewer software were applied to analyze data. The results showed four main topics as follows: “Clinical symptoms” (41.8%), “Diagnosis and treatment” (28.1%), “Bacterial structure, pathogenicity and genetics” (22.3%), and “Prevention” (7.84%). The results of this study can be helpful in the decision of this organization and knowledge of the process of studies on tuberculosis and investment and development of programs and guidelines against this disease. |
first_indexed | 2024-04-11T14:34:03Z |
format | Article |
id | doaj.art-51f98e547eab4ca09c26ca7fecf68e7f |
institution | Directory Open Access Journal |
issn | 2090-1518 |
language | English |
last_indexed | 2024-04-11T14:34:03Z |
publishDate | 2022-01-01 |
publisher | Hindawi Limited |
record_format | Article |
series | Tuberculosis Research and Treatment |
spelling | doaj.art-51f98e547eab4ca09c26ca7fecf68e7f2022-12-22T04:18:26ZengHindawi LimitedTuberculosis Research and Treatment2090-15182022-01-01202210.1155/2022/8039046Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word AnalysisMeisam Dastani0Alireza Mohammadzadeh1Jalal Mardaneh2Reza Ahmadi3Infectious Diseases Research CenterDepartment of MicrobiologyDepartment of MicrobiologySchool of MedicineTuberculosis is still one of the most severe progressive diseases; it severely limits the social and economic development of many countries. In the present study, the topic trend of scientific publications on tuberculosis has been examined using text mining techniques and co-word analysis with an analytical approach. The statistical population of the study is all global publications related to tuberculosis. In order to extract the data, the Scopus citation database was used for the period 1900 to 2022. The main keywords for the search strategy were chosen through consultation with thematic specialists and using MESH. Python programming language and VOSviewer software were applied to analyze data. The results showed four main topics as follows: “Clinical symptoms” (41.8%), “Diagnosis and treatment” (28.1%), “Bacterial structure, pathogenicity and genetics” (22.3%), and “Prevention” (7.84%). The results of this study can be helpful in the decision of this organization and knowledge of the process of studies on tuberculosis and investment and development of programs and guidelines against this disease.http://dx.doi.org/10.1155/2022/8039046 |
spellingShingle | Meisam Dastani Alireza Mohammadzadeh Jalal Mardaneh Reza Ahmadi Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis Tuberculosis Research and Treatment |
title | Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis |
title_full | Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis |
title_fullStr | Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis |
title_full_unstemmed | Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis |
title_short | Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis |
title_sort | topic analysis and mapping of tuberculosis research using text mining and co word analysis |
url | http://dx.doi.org/10.1155/2022/8039046 |
work_keys_str_mv | AT meisamdastani topicanalysisandmappingoftuberculosisresearchusingtextminingandcowordanalysis AT alirezamohammadzadeh topicanalysisandmappingoftuberculosisresearchusingtextminingandcowordanalysis AT jalalmardaneh topicanalysisandmappingoftuberculosisresearchusingtextminingandcowordanalysis AT rezaahmadi topicanalysisandmappingoftuberculosisresearchusingtextminingandcowordanalysis |