Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial
Background: As a result of stroke, patients have problems with locomotion and transfers, which lead to frequent falls. Recovery after stroke is a major goal of rehabilitation, but it is difficult to choose which treatment method is most beneficial for stroke survivors. Recently, powered robotic exos...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-01-01
|
Series: | Frontiers in Neurology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fneur.2019.01344/full |
_version_ | 1818012177397710848 |
---|---|
author | Anna Rojek Anna Mika Łukasz Oleksy Łukasz Oleksy Artur Stolarczyk Renata Kielnar |
author_facet | Anna Rojek Anna Mika Łukasz Oleksy Łukasz Oleksy Artur Stolarczyk Renata Kielnar |
author_sort | Anna Rojek |
collection | DOAJ |
description | Background: As a result of stroke, patients have problems with locomotion and transfers, which lead to frequent falls. Recovery after stroke is a major goal of rehabilitation, but it is difficult to choose which treatment method is most beneficial for stroke survivors. Recently, powered robotic exoskeletons are used in treatment to maximize the neural recovery of patients after stroke, but there are no studies evaluating the changes in balance among patients rehabilitated with an exoskeleton.Purpose: The aim of this study was to evaluate the effects of Ekso GT exoskeleton-assisted gait training on balance, load distribution, and functional status of patients after ischemic stroke.Methods: The outcomes are based on 44 patients aged 55–85 years after ischemic stroke who were previously randomly assigned into two groups: experimental (with Ekso GT rehabilitation) and control (with classical rehabilitation). At baseline and after 4 weeks of treatment, the patients were evaluated on balance, load distribution, and functional status using, respectively a stabilometric platform, the Barthel Index, and the Rivermead Mobility Index.Results: In the experimental group, balance improved regarding the variables describing sway area as ellipse major and minor axes. In the control group, improvement was noted in sway velocity. After the therapy, total load distribution on feet in both groups showed a small and insignificant tendency toward reduction in the amount of uninvolved limb loading. In the control group, significant load transfer from the backfoot to the forefoot was noted. Both forms of rehabilitation caused significant changes in functional status.Conclusions: Both training with the use of the Ekso GT exoskeleton and classical physiotherapy lead to functional improvement of patients after ischemic stroke. However, in the experimental group, improvement was observed in a larger number of categories, which may suggest potentially greater impact of treatment with the exoskeleton on functional status. Also, both forms of rehabilitation caused significant changes in balance, but we have noted some trends indicating that treatment with exoskeleton may be more beneficial for some patients. The load transfer from the backfoot to the forefoot observed in the control group was an unfavorable phenomenon. We suggest that the Ekso GT exoskeleton may be a promising tool in the rehabilitation of patients after stroke.Trial registration: Trial ID ACTRN12616000148471 |
first_indexed | 2024-04-14T06:17:39Z |
format | Article |
id | doaj.art-520c6e0cc4b342ef93962b8974073648 |
institution | Directory Open Access Journal |
issn | 1664-2295 |
language | English |
last_indexed | 2024-04-14T06:17:39Z |
publishDate | 2020-01-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Neurology |
spelling | doaj.art-520c6e0cc4b342ef93962b89740736482022-12-22T02:08:08ZengFrontiers Media S.A.Frontiers in Neurology1664-22952020-01-011010.3389/fneur.2019.01344489493Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled TrialAnna Rojek0Anna Mika1Łukasz Oleksy2Łukasz Oleksy3Artur Stolarczyk4Renata Kielnar5Physiotherapy Clinic RehaPlus, Kraków, PolandDepartment of Clinical Rehabilitation, University of Physical Education in Krakow, Kraków, PolandPhysiotherapy and Sports Centre, Rzeszow University of Technology, Rzeszow, PolandOleksy Medical & Sports Sciences, Łańcut, PolandOrthopaedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, PolandMedical College of Rzeszow University, Rzeszow, PolandBackground: As a result of stroke, patients have problems with locomotion and transfers, which lead to frequent falls. Recovery after stroke is a major goal of rehabilitation, but it is difficult to choose which treatment method is most beneficial for stroke survivors. Recently, powered robotic exoskeletons are used in treatment to maximize the neural recovery of patients after stroke, but there are no studies evaluating the changes in balance among patients rehabilitated with an exoskeleton.Purpose: The aim of this study was to evaluate the effects of Ekso GT exoskeleton-assisted gait training on balance, load distribution, and functional status of patients after ischemic stroke.Methods: The outcomes are based on 44 patients aged 55–85 years after ischemic stroke who were previously randomly assigned into two groups: experimental (with Ekso GT rehabilitation) and control (with classical rehabilitation). At baseline and after 4 weeks of treatment, the patients were evaluated on balance, load distribution, and functional status using, respectively a stabilometric platform, the Barthel Index, and the Rivermead Mobility Index.Results: In the experimental group, balance improved regarding the variables describing sway area as ellipse major and minor axes. In the control group, improvement was noted in sway velocity. After the therapy, total load distribution on feet in both groups showed a small and insignificant tendency toward reduction in the amount of uninvolved limb loading. In the control group, significant load transfer from the backfoot to the forefoot was noted. Both forms of rehabilitation caused significant changes in functional status.Conclusions: Both training with the use of the Ekso GT exoskeleton and classical physiotherapy lead to functional improvement of patients after ischemic stroke. However, in the experimental group, improvement was observed in a larger number of categories, which may suggest potentially greater impact of treatment with the exoskeleton on functional status. Also, both forms of rehabilitation caused significant changes in balance, but we have noted some trends indicating that treatment with exoskeleton may be more beneficial for some patients. The load transfer from the backfoot to the forefoot observed in the control group was an unfavorable phenomenon. We suggest that the Ekso GT exoskeleton may be a promising tool in the rehabilitation of patients after stroke.Trial registration: Trial ID ACTRN12616000148471https://www.frontiersin.org/article/10.3389/fneur.2019.01344/fullischemic strokeexoskeletonphysiotherapybalanceload distributionfunctional status |
spellingShingle | Anna Rojek Anna Mika Łukasz Oleksy Łukasz Oleksy Artur Stolarczyk Renata Kielnar Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial Frontiers in Neurology ischemic stroke exoskeleton physiotherapy balance load distribution functional status |
title | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial |
title_full | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial |
title_fullStr | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial |
title_full_unstemmed | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial |
title_short | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial |
title_sort | effects of exoskeleton gait training on balance load distribution and functional status in stroke a randomized controlled trial |
topic | ischemic stroke exoskeleton physiotherapy balance load distribution functional status |
url | https://www.frontiersin.org/article/10.3389/fneur.2019.01344/full |
work_keys_str_mv | AT annarojek effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial AT annamika effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial AT łukaszoleksy effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial AT łukaszoleksy effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial AT arturstolarczyk effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial AT renatakielnar effectsofexoskeletongaittrainingonbalanceloaddistributionandfunctionalstatusinstrokearandomizedcontrolledtrial |