Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition

A non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr&l...

Full description

Bibliographic Details
Main Authors: Xuan Yang, Oleg Heczko, Joonas Lehtonen, Roy Björkstrand, Mika Salmi, Volker Uhlenwinkel, Yanling Ge, Simo-Pekka Hannula
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/5/1801
_version_ 1797474568142585856
author Xuan Yang
Oleg Heczko
Joonas Lehtonen
Roy Björkstrand
Mika Salmi
Volker Uhlenwinkel
Yanling Ge
Simo-Pekka Hannula
author_facet Xuan Yang
Oleg Heczko
Joonas Lehtonen
Roy Björkstrand
Mika Salmi
Volker Uhlenwinkel
Yanling Ge
Simo-Pekka Hannula
author_sort Xuan Yang
collection DOAJ
description A non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (<i>M</i><sub>s</sub>) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger <i>M</i><sub>s</sub>. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.
first_indexed 2024-03-09T20:32:59Z
format Article
id doaj.art-520fec5665a74cda960c326ea0a2785d
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T20:32:59Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-520fec5665a74cda960c326ea0a2785d2023-11-23T23:19:06ZengMDPI AGMaterials1996-19442022-02-01155180110.3390/ma15051801Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal DecompositionXuan Yang0Oleg Heczko1Joonas Lehtonen2Roy Björkstrand3Mika Salmi4Volker Uhlenwinkel5Yanling Ge6Simo-Pekka Hannula7Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandFZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech RepublicDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandDepartment of Mechanical Engineering, Aalto University School of Engineering, P.O. Box 14100, FI-00076 Espoo, FinlandDepartment of Mechanical Engineering, Aalto University School of Engineering, P.O. Box 14100, FI-00076 Espoo, FinlandLeibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359 Bremen, GermanyDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandA non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (<i>M</i><sub>s</sub>) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger <i>M</i><sub>s</sub>. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.https://www.mdpi.com/1996-1944/15/5/1801high-entropy alloyslaser powder bed fusionselective laser meltingdirect metal laser sinteringspinodal decompositionmagnetic properties
spellingShingle Xuan Yang
Oleg Heczko
Joonas Lehtonen
Roy Björkstrand
Mika Salmi
Volker Uhlenwinkel
Yanling Ge
Simo-Pekka Hannula
Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
Materials
high-entropy alloys
laser powder bed fusion
selective laser melting
direct metal laser sintering
spinodal decomposition
magnetic properties
title Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
title_full Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
title_fullStr Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
title_full_unstemmed Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
title_short Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
title_sort microstructure and properties of additively manufactured alcocr sub 0 75 sub cu sub 0 5 sub feni multicomponent alloy controlling magnetic properties by laser powder bed fusion via spinodal decomposition
topic high-entropy alloys
laser powder bed fusion
selective laser melting
direct metal laser sintering
spinodal decomposition
magnetic properties
url https://www.mdpi.com/1996-1944/15/5/1801
work_keys_str_mv AT xuanyang microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT olegheczko microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT joonaslehtonen microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT roybjorkstrand microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT mikasalmi microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT volkeruhlenwinkel microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT yanlingge microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition
AT simopekkahannula microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition