Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition
A non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr&l...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/5/1801 |
_version_ | 1797474568142585856 |
---|---|
author | Xuan Yang Oleg Heczko Joonas Lehtonen Roy Björkstrand Mika Salmi Volker Uhlenwinkel Yanling Ge Simo-Pekka Hannula |
author_facet | Xuan Yang Oleg Heczko Joonas Lehtonen Roy Björkstrand Mika Salmi Volker Uhlenwinkel Yanling Ge Simo-Pekka Hannula |
author_sort | Xuan Yang |
collection | DOAJ |
description | A non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (<i>M</i><sub>s</sub>) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger <i>M</i><sub>s</sub>. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials. |
first_indexed | 2024-03-09T20:32:59Z |
format | Article |
id | doaj.art-520fec5665a74cda960c326ea0a2785d |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-09T20:32:59Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-520fec5665a74cda960c326ea0a2785d2023-11-23T23:19:06ZengMDPI AGMaterials1996-19442022-02-01155180110.3390/ma15051801Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal DecompositionXuan Yang0Oleg Heczko1Joonas Lehtonen2Roy Björkstrand3Mika Salmi4Volker Uhlenwinkel5Yanling Ge6Simo-Pekka Hannula7Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandFZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech RepublicDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandDepartment of Mechanical Engineering, Aalto University School of Engineering, P.O. Box 14100, FI-00076 Espoo, FinlandDepartment of Mechanical Engineering, Aalto University School of Engineering, P.O. Box 14100, FI-00076 Espoo, FinlandLeibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359 Bremen, GermanyDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandDepartment of Chemistry and Materials Science, Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Espoo, FinlandA non-equiatomic AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (<i>M</i><sub>s</sub>) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger <i>M</i><sub>s</sub>. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.https://www.mdpi.com/1996-1944/15/5/1801high-entropy alloyslaser powder bed fusionselective laser meltingdirect metal laser sinteringspinodal decompositionmagnetic properties |
spellingShingle | Xuan Yang Oleg Heczko Joonas Lehtonen Roy Björkstrand Mika Salmi Volker Uhlenwinkel Yanling Ge Simo-Pekka Hannula Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition Materials high-entropy alloys laser powder bed fusion selective laser melting direct metal laser sintering spinodal decomposition magnetic properties |
title | Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition |
title_full | Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition |
title_fullStr | Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition |
title_full_unstemmed | Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition |
title_short | Microstructure and Properties of Additively Manufactured AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition |
title_sort | microstructure and properties of additively manufactured alcocr sub 0 75 sub cu sub 0 5 sub feni multicomponent alloy controlling magnetic properties by laser powder bed fusion via spinodal decomposition |
topic | high-entropy alloys laser powder bed fusion selective laser melting direct metal laser sintering spinodal decomposition magnetic properties |
url | https://www.mdpi.com/1996-1944/15/5/1801 |
work_keys_str_mv | AT xuanyang microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT olegheczko microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT joonaslehtonen microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT roybjorkstrand microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT mikasalmi microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT volkeruhlenwinkel microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT yanlingge microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition AT simopekkahannula microstructureandpropertiesofadditivelymanufacturedalcocrsub075subcusub05subfenimulticomponentalloycontrollingmagneticpropertiesbylaserpowderbedfusionviaspinodaldecomposition |