Complete genome sequence of the sulfur-oxidizing chemolithoautotrophic Sulfurovum lithotrophicum 42BKTT

Abstract A sulfur-oxidizing chemolithoautotrophic bacterium, Sulfurovum lithotrophicum 42BKTT, isolated from hydrothermal sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2 into C5H8NO4 − at a high rate of specific mitigation (0.42 g CO...

Full description

Bibliographic Details
Main Authors: Wooyoung Jeon, Lia Priscilla, Gyuyeon Park, Heeseok Lee, Narae Lee, Dongyup Lee, Hyuksung Kwon, Iksung Ahn, Changha Lee, Hongweon Lee, Jungoh Ahn
Format: Article
Language:English
Published: BMC 2017-09-01
Series:Standards in Genomic Sciences
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40793-017-0265-z
Description
Summary:Abstract A sulfur-oxidizing chemolithoautotrophic bacterium, Sulfurovum lithotrophicum 42BKTT, isolated from hydrothermal sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2 into C5H8NO4 − at a high rate of specific mitigation (0.42 g CO2/cell/h). The genome of S. lithotrophicum 42BKTT comprised of a single chromosome of 2217,891 bp with 2217 genes, including 2146 protein-coding genes and 54 RNA genes. Here, we present its complete genome-sequence information, including information about the genes encoding enzymes involved in CO2 fixation and sulfur oxidation.
ISSN:1944-3277