Scalp HFO rates are higher for larger lesions

Abstract High‐frequency oscillations (HFO) in scalp EEG are a new and promising noninvasive epilepsy biomarker, providing added prognostic value, particularly in pediatric lesional epilepsy. However, it is unclear if lesion characteristics, such as lesion volume, depth, type, and localization, impac...

Full description

Bibliographic Details
Main Authors: Dorottya Cserpan, Antonio Gennari, Luca Gaito, Santo Pietro Lo Biundo, Ruth Tuura, Johannes Sarnthein, Georgia Ramantani
Format: Article
Language:English
Published: Wiley 2022-09-01
Series:Epilepsia Open
Subjects:
Online Access:https://doi.org/10.1002/epi4.12596
Description
Summary:Abstract High‐frequency oscillations (HFO) in scalp EEG are a new and promising noninvasive epilepsy biomarker, providing added prognostic value, particularly in pediatric lesional epilepsy. However, it is unclear if lesion characteristics, such as lesion volume, depth, type, and localization, impact scalp HFO rates. We analyzed scalp EEG from 13 children and adolescents with focal epilepsy associated with focal cortical dysplasia (FCD), low‐grade tumors, or hippocampal sclerosis. We applied a validated automated detector to determine HFO rates in bipolar channels. We identified the lesion characteristics in MRI. Larger lesions defined by MRI volumetric analysis corresponded to higher cumulative scalp HFO rates (P = .01) that were detectable in a higher number of channels (P = .05). Both superficial and deep lesions generated HFO detectable in the scalp EEG. Lesion type (FCD vs tumor) and lobar localization (temporal vs extratemporal) did not affect scalp HFO rates in our study. Our observations support that all lesions may generate HFO detectable in scalp EEG, irrespective of their characteristics, whereas larger epileptogenic lesions generate higher scalp HFO rates over larger areas that are thus more accessible to detection. Our study provides crucial insight into scalp HFO detectability in pediatric lesional epilepsy, facilitating their implementation as an epilepsy biomarker in a clinical setting.
ISSN:2470-9239