The Analytical Stochastic Solutions for the Stochastic Potential Yu–Toda–Sasa–Fukuyama Equation with Conformable Derivative Using Different Methods

We consider in this study the (3+1)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama with conformable derivative (SPYTSFE-CD) forced by white noise. For different kind of solutions of SPYTSFE-CD, including hyperbolic, rational, trigonometric and function, we use He’s semi-inverse and improved...

Full description

Bibliographic Details
Main Authors: Sahar Albosaily, Elsayed M. Elsayed, M. Daher Albalwi, Meshari Alesemi, Wael W. Mohammed
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/11/787
Description
Summary:We consider in this study the (3+1)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama with conformable derivative (SPYTSFE-CD) forced by white noise. For different kind of solutions of SPYTSFE-CD, including hyperbolic, rational, trigonometric and function, we use He’s semi-inverse and improved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mo>/</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>-expansion methods. Because it investigates solitons and nonlinear waves in dispersive media, plasma physics and fluid dynamics, the potential Yu–Toda–Sasa–Fukuyama theory may explain many intriguing scientific phenomena. We provide numerous 2D and 3D figures to address how the white noise destroys the pattern formation of the solutions and stabilizes the solutions of SPYTSFE-CD.
ISSN:2504-3110