Experimental Study on the Target–Receiver Formation Problem with the Exploitation of Coherent and Non-Coherent Bearing Information

Localization of emitting sources is a fundamental task in sonar applications. One of the most important factors that affect the localization performance is the sensor–target geometry. The sensor formation problem is usually addressed in related work assuming that the target is static and the locatio...

Full description

Bibliographic Details
Main Authors: Lu Wang, Shiliang Fang, Yixin Yang, Xionghou Liu
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/10/12/1922
Description
Summary:Localization of emitting sources is a fundamental task in sonar applications. One of the most important factors that affect the localization performance is the sensor–target geometry. The sensor formation problem is usually addressed in related work assuming that the target is static and the location is known to a certain degree, but this is not the case for many underwater surveillance problems. In this paper, we deal with the target–receiver formation problem from a different perspective, and propose to investigate the effect of target–receiver geometry on localization performance by exploiting the spatial spectrum of the direct position determination (DPD) methods. For a given multi-array system, the transformation of geometrical patterns can be explicitly demonstrated as the target moves along the track. Meaningful characteristics of the DPD methods are obtained from the experimental results, where coherent and non-coherent bearing information is used and compared. The feasibility of the DPD approaches in the ocean environments is also investigated by comparing with a matched filter processing (MFP)-based multi-array processor in order to validate the credibility of the results in this paper.
ISSN:2077-1312