Geometrical network of granular materials under isochoric cyclic shearing

We use three-dimensional particle dynamics simulations to investigate the microstructure evolution of granular material subjected to isochoric cyclic shearing, driving the system to a liquefaction state. The cyclically sheared assembly presents a realistic macroscopic response as observed in physica...

Full description

Bibliographic Details
Main Authors: Yang Ming, Taiebat Mahdi, Mutabaruka Patrick, Radjai Farhang
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/03/epjconf_pg2021_11004.pdf
Description
Summary:We use three-dimensional particle dynamics simulations to investigate the microstructure evolution of granular material subjected to isochoric cyclic shearing, driving the system to a liquefaction state. The cyclically sheared assembly presents a realistic macroscopic response as observed in physical experiments. By analyzing the contact network evolution in the post-liquefaction period, we show that the onset of liquefaction state is characterized by a sudden drop of coordination number and a fragile particle connectivity network. The simulation suggests a critical coordination number for exiting the liquefaction state. Evolution of fabric anisotropy combined with coordination number implies the isotropic and anisotropic gain or loss of contacts at certain durations of a post-liquefaction loading cycle.
ISSN:2100-014X