Two-Species Reaction-Diffusion System: the Effect of Long-Range Spreading

We study fluctuation effects in the two-species reaction-diffusion system A + B → Ø and A + A → (Ø, A). In contrast to the usually assumed ordinary short-range diffusion spreading of the reactants we consider anomalous diffusion due to microscopic long-range hops. In order to describe the latter, we...

Full description

Bibliographic Details
Main Authors: Birnšteinová Šarlota, Hnatič Michal, Lučivjanský Tomáš
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/02/epjconf_mmcp2019_02005.pdf
Description
Summary:We study fluctuation effects in the two-species reaction-diffusion system A + B → Ø and A + A → (Ø, A). In contrast to the usually assumed ordinary short-range diffusion spreading of the reactants we consider anomalous diffusion due to microscopic long-range hops. In order to describe the latter, we employ the Lévy stochastic ensemble. The probability distribution for the Lévy flights decays in d dimensions with the distance r according to a power-law r−d−σ. For anomalous diffusion (including Lévy flights) the critical dimension dc = σ depends on the control parameter σ, 0 < σ ≤ 2. The model is studied in terms of the field theoretic approach based on the Feynman diagrammatic technique and perturbative renormalization group method. We demonstrate the ideas behind the B particle density calculation.
ISSN:2100-014X