Experimental Investigation into the Tail-Slapping Motion of a Projectile with an Oblique Water-Entry Speed

In this study, the tail-slapping behavior of an oblique water-entry projectile is investigated through high-speed photography technology. The experimental images and data are captured, extracted and processed using a digital image processing method. The experimental repeatability is verified. By exa...

Full description

Bibliographic Details
Main Authors: Lin Lu, Cisong Gao, Fei Li, Dongxiao Zhang, Xuepu Yan, Qiang Li, Yanxiao Hu
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/9/1664
Description
Summary:In this study, the tail-slapping behavior of an oblique water-entry projectile is investigated through high-speed photography technology. The experimental images and data are captured, extracted and processed using a digital image processing method. The experimental repeatability is verified. By examining the formation, development and collapse process of the projectile’s cavity, this study investigates the impact of the tail-slapping motion on the cavity’s evolution. Furthermore, it examines the distinctive characteristics of both the tail-slapping cavity and the original cavity at varying initial water-entry speeds. By analyzing the formation, development and collapse process of the cavity of the projectile, the influence of the tail-slapping motion on the cavity evolution is explored. Furthermore, it examines the evolution characteristics of both the tail-slapping cavity and the original cavity under different initial water-entry speeds. The results indicate that a tail-slapping cavity is formed during the reciprocating motion of the projectile. The tail-slapping cavity fits closely with the original cavity and is finally pulled off from the surface of the original cavity to collapse. In addition, as the initial water-entry speed increases, both the maximum cross-section size of the tail-slapping cavity and the length of the original cavity gradually increase. With the increase in the number of tail-slapping motions, the speed attenuation amplitude of the projectile increases during each tail-slapping motion, the time interval between two tail-slapping motions is gradually shortened, the energy loss of the projectile correspondingly enlarges, and the speed storage capacity of the projectile decreases.
ISSN:2077-1312