Summary: | In this paper, we find the sets of all extremal functions for approximations of the Hölder classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic functions of one variable by the Favard sums, which coincide with the set of all extremal functions realizing the exact upper bounds of the best approximations of this class by trigonometric polynomials. In addition, we obtain the sets of all of extremal functions for approximations of the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> by linear methods of summation of Fourier series. Furthermore, we receive the set of all extremal functions for the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> in the Korneichuk–Stechkin lemma and its analogue, the Stepanets lemma, for the Hölder class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> functions of two variables being 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic in each variable.
|