On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums

In this paper, we find the sets of all extremal functions for approximations of the Hölder classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup&g...

Full description

Bibliographic Details
Main Authors: Dmytro Bushev, Inna Kal’chuk
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/763
_version_ 1797585525331197952
author Dmytro Bushev
Inna Kal’chuk
author_facet Dmytro Bushev
Inna Kal’chuk
author_sort Dmytro Bushev
collection DOAJ
description In this paper, we find the sets of all extremal functions for approximations of the Hölder classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic functions of one variable by the Favard sums, which coincide with the set of all extremal functions realizing the exact upper bounds of the best approximations of this class by trigonometric polynomials. In addition, we obtain the sets of all of extremal functions for approximations of the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> by linear methods of summation of Fourier series. Furthermore, we receive the set of all extremal functions for the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> in the Korneichuk–Stechkin lemma and its analogue, the Stepanets lemma, for the Hölder class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> functions of two variables being 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic in each variable.
first_indexed 2024-03-11T00:07:22Z
format Article
id doaj.art-527411da225e40fe81bae17fa240ef23
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T00:07:22Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-527411da225e40fe81bae17fa240ef232023-11-19T00:14:53ZengMDPI AGAxioms2075-16802023-08-0112876310.3390/axioms12080763On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard SumsDmytro Bushev0Inna Kal’chuk1Faculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University, 43025 Lutsk, UkraineFaculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University, 43025 Lutsk, UkraineIn this paper, we find the sets of all extremal functions for approximations of the Hölder classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic functions of one variable by the Favard sums, which coincide with the set of all extremal functions realizing the exact upper bounds of the best approximations of this class by trigonometric polynomials. In addition, we obtain the sets of all of extremal functions for approximations of the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> by linear methods of summation of Fourier series. Furthermore, we receive the set of all extremal functions for the class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> in the Korneichuk–Stechkin lemma and its analogue, the Stepanets lemma, for the Hölder class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> functions of two variables being 2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>-periodic in each variable.https://www.mdpi.com/2075-1680/12/8/763Favard sumsbest approximationexact upper boundsextremal functionsuniform metric
spellingShingle Dmytro Bushev
Inna Kal’chuk
On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
Axioms
Favard sums
best approximation
exact upper bounds
extremal functions
uniform metric
title On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
title_full On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
title_fullStr On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
title_full_unstemmed On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
title_short On the Realization of Exact Upper Bounds of the Best Approximations on the Classes <i>H</i><sup>1,1</sup> by Favard Sums
title_sort on the realization of exact upper bounds of the best approximations on the classes i h i sup 1 1 sup by favard sums
topic Favard sums
best approximation
exact upper bounds
extremal functions
uniform metric
url https://www.mdpi.com/2075-1680/12/8/763
work_keys_str_mv AT dmytrobushev ontherealizationofexactupperboundsofthebestapproximationsontheclassesihisup11supbyfavardsums
AT innakalchuk ontherealizationofexactupperboundsofthebestapproximationsontheclassesihisup11supbyfavardsums