Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier

Constant Elasticity of Substitution (CES) production function is the intrinsic nonlinear regression models that are often used to estimate the data in an industry. Intrinsic nonlinear regression model is a kind of nonlinear regression that can not be linearized, so as to estimate the beta parameters...

Full description

Bibliographic Details
Main Authors: Nur Laili Arofah, Sri Harini
Format: Article
Language:English
Published: Mathematics Department UIN Maulana Malik Ibrahim Malang 2015-11-01
Series:Cauchy: Jurnal Matematika Murni dan Aplikasi
Subjects:
Online Access:https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3170
_version_ 1811249609841836032
author Nur Laili Arofah
Sri Harini
author_facet Nur Laili Arofah
Sri Harini
author_sort Nur Laili Arofah
collection DOAJ
description Constant Elasticity of Substitution (CES) production function is the intrinsic nonlinear regression models that are often used to estimate the data in an industry. Intrinsic nonlinear regression model is a kind of nonlinear regression that can not be linearized, so as to estimate the beta parameters nonlinear statistical model used was Nonlinear Least Squares (NLS) using a first order taylor series approach used in the Gauss Newton iteration. One of the problems often encountered in the analysis of data is an outlier, the presence of outliers in the data analysis greatly influence the results of the analysis so it becomes less valid and the estimation become biased. One method that is resistant to outliers regression is a method of Nonlinear Least Trimmed Squares. This research aims to determine the characteristics of parameter CES production function which contains outlier. The result shows that parameter of the production function CES which contains outliers are bias, inconsistent. So the CES production function which does not contain outliers better than the are contains outliers.
first_indexed 2024-04-12T15:49:36Z
format Article
id doaj.art-5275affae8854c18963e86e9bdb8afa6
institution Directory Open Access Journal
issn 2086-0382
2477-3344
language English
last_indexed 2024-04-12T15:49:36Z
publishDate 2015-11-01
publisher Mathematics Department UIN Maulana Malik Ibrahim Malang
record_format Article
series Cauchy: Jurnal Matematika Murni dan Aplikasi
spelling doaj.art-5275affae8854c18963e86e9bdb8afa62022-12-22T03:26:32ZengMathematics Department UIN Maulana Malik Ibrahim MalangCauchy: Jurnal Matematika Murni dan Aplikasi2086-03822477-33442015-11-0141222710.18860/ca.v4i1.31702789Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai OutlierNur Laili Arofah0Sri Harini1Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim MalangJurusan Matematika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim MalangConstant Elasticity of Substitution (CES) production function is the intrinsic nonlinear regression models that are often used to estimate the data in an industry. Intrinsic nonlinear regression model is a kind of nonlinear regression that can not be linearized, so as to estimate the beta parameters nonlinear statistical model used was Nonlinear Least Squares (NLS) using a first order taylor series approach used in the Gauss Newton iteration. One of the problems often encountered in the analysis of data is an outlier, the presence of outliers in the data analysis greatly influence the results of the analysis so it becomes less valid and the estimation become biased. One method that is resistant to outliers regression is a method of Nonlinear Least Trimmed Squares. This research aims to determine the characteristics of parameter CES production function which contains outlier. The result shows that parameter of the production function CES which contains outliers are bias, inconsistent. So the CES production function which does not contain outliers better than the are contains outliers.https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3170nonlinear statistical modelparameter estimationconstant elasticity of substitution (ces) production functionoutliersnonlinear least trimmed square (nlts) method, gauss newton iteration
spellingShingle Nur Laili Arofah
Sri Harini
Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
Cauchy: Jurnal Matematika Murni dan Aplikasi
nonlinear statistical model
parameter estimation
constant elasticity of substitution (ces) production function
outliers
nonlinear least trimmed square (nlts) method, gauss newton iteration
title Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
title_full Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
title_fullStr Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
title_full_unstemmed Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
title_short Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier
title_sort estimasi nonlinear least trimmed squares nlts pada model regresi nonlinier yang dikenai outlier
topic nonlinear statistical model
parameter estimation
constant elasticity of substitution (ces) production function
outliers
nonlinear least trimmed square (nlts) method, gauss newton iteration
url https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3170
work_keys_str_mv AT nurlailiarofah estimasinonlinearleasttrimmedsquaresnltspadamodelregresinonlinieryangdikenaioutlier
AT sriharini estimasinonlinearleasttrimmedsquaresnltspadamodelregresinonlinieryangdikenaioutlier