Bounded solutions for a class of Hamiltonian systems

We obtain solutions bounded for all $t \in (-\infty,\infty)$ of systems of ordinary differential equations as limits of the solutions of the corresponding Dirichlet problems on $(-L,L)$, with $L \to \infty$. Using the variational approach, we derive a priori estimates for the corresponding Dirich...

Full description

Bibliographic Details
Main Authors: Philip Korman, Guanying Peng
Format: Article
Language:English
Published: University of Szeged 2018-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6436
_version_ 1797830505431826432
author Philip Korman
Guanying Peng
author_facet Philip Korman
Guanying Peng
author_sort Philip Korman
collection DOAJ
description We obtain solutions bounded for all $t \in (-\infty,\infty)$ of systems of ordinary differential equations as limits of the solutions of the corresponding Dirichlet problems on $(-L,L)$, with $L \to \infty$. Using the variational approach, we derive a priori estimates for the corresponding Dirichlet problems, allowing passage to the limit, via a diagonal sequence.
first_indexed 2024-04-09T13:38:16Z
format Article
id doaj.art-5277062368f84835ace714c37af6e9e1
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:16Z
publishDate 2018-09-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-5277062368f84835ace714c37af6e9e12023-05-09T07:53:08ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752018-09-012018811710.14232/ejqtde.2018.1.816436Bounded solutions for a class of Hamiltonian systemsPhilip Korman0Guanying Peng1Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, USADepartment of Mathematics, University of Arizona, Tucson, Arizona, USAWe obtain solutions bounded for all $t \in (-\infty,\infty)$ of systems of ordinary differential equations as limits of the solutions of the corresponding Dirichlet problems on $(-L,L)$, with $L \to \infty$. Using the variational approach, we derive a priori estimates for the corresponding Dirichlet problems, allowing passage to the limit, via a diagonal sequence.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6436solutions bounded for all $t$a priori estimates
spellingShingle Philip Korman
Guanying Peng
Bounded solutions for a class of Hamiltonian systems
Electronic Journal of Qualitative Theory of Differential Equations
solutions bounded for all $t$
a priori estimates
title Bounded solutions for a class of Hamiltonian systems
title_full Bounded solutions for a class of Hamiltonian systems
title_fullStr Bounded solutions for a class of Hamiltonian systems
title_full_unstemmed Bounded solutions for a class of Hamiltonian systems
title_short Bounded solutions for a class of Hamiltonian systems
title_sort bounded solutions for a class of hamiltonian systems
topic solutions bounded for all $t$
a priori estimates
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6436
work_keys_str_mv AT philipkorman boundedsolutionsforaclassofhamiltoniansystems
AT guanyingpeng boundedsolutionsforaclassofhamiltoniansystems