Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data

Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2)...

Full description

Bibliographic Details
Main Authors: Audrey Mercier, Julie Betbeder, Julien Denize, Jean-Luc Roger, Fabien Spicher, Jérôme Lacoux, David Roger, Jacques Baudry, Laurence Hubert-Moy
Format: Article
Language:English
Published: Elsevier 2021-10-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340921006909
_version_ 1818728529836113920
author Audrey Mercier
Julie Betbeder
Julien Denize
Jean-Luc Roger
Fabien Spicher
Jérôme Lacoux
David Roger
Jacques Baudry
Laurence Hubert-Moy
author_facet Audrey Mercier
Julie Betbeder
Julien Denize
Jean-Luc Roger
Fabien Spicher
Jérôme Lacoux
David Roger
Jacques Baudry
Laurence Hubert-Moy
author_sort Audrey Mercier
collection DOAJ
description Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development.
first_indexed 2024-12-17T22:31:27Z
format Article
id doaj.art-527c545c8b2e4706833dec620005d110
institution Directory Open Access Journal
issn 2352-3409
language English
last_indexed 2024-12-17T22:31:27Z
publishDate 2021-10-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj.art-527c545c8b2e4706833dec620005d1102022-12-21T21:30:11ZengElsevierData in Brief2352-34092021-10-0138107408Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field dataAudrey Mercier0Julie Betbeder1Julien Denize2Jean-Luc Roger3Fabien Spicher4Jérôme Lacoux5David Roger6Jacques Baudry7Laurence Hubert-Moy8LETG Rennes UMR 6554, Université Rennes 2, Place du recteur Henri Le Moal, Rennes Cedex 35043, France; Corresponding author.CIRAD, Forêts et Sociétés, Montpellier 34398, France; Ecosystems Modelling Unity, Forests, Biodiversity and Climate Change Program, Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Cartago, Costa RicaLETG Rennes UMR 6554, Université Rennes 2, Place du recteur Henri Le Moal, Rennes Cedex 35043, France; Institute of Electronics and Telecommunications of Rennes IETR, UMR CNRS 6164, University of Rennes, Rennes 35000, FranceInstitut Agro, UMR 0980 BAGAP, ESA, Rennes 35042, FranceUnité Ecologie et Dynamiques des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, 33 rue St-Leu, Amiens 80039, FranceUnité Ecologie et Dynamiques des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, 33 rue St-Leu, Amiens 80039, FranceUnité Ecologie et Dynamiques des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, 33 rue St-Leu, Amiens 80039, FranceInstitut Agro, UMR 0980 BAGAP, ESA, Rennes 35042, FranceLETG Rennes UMR 6554, Université Rennes 2, Place du recteur Henri Le Moal, Rennes Cedex 35043, FranceCrop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development.http://www.sciencedirect.com/science/article/pii/S2352340921006909LAIBiomassPhenological stagesWater contentRemote sensingOptical and SAR satellite images
spellingShingle Audrey Mercier
Julie Betbeder
Julien Denize
Jean-Luc Roger
Fabien Spicher
Jérôme Lacoux
David Roger
Jacques Baudry
Laurence Hubert-Moy
Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
Data in Brief
LAI
Biomass
Phenological stages
Water content
Remote sensing
Optical and SAR satellite images
title Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
title_full Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
title_fullStr Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
title_full_unstemmed Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
title_short Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
title_sort estimating crop parameters using sentinel 1 and 2 datasets and geospatial field data
topic LAI
Biomass
Phenological stages
Water content
Remote sensing
Optical and SAR satellite images
url http://www.sciencedirect.com/science/article/pii/S2352340921006909
work_keys_str_mv AT audreymercier estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT juliebetbeder estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT juliendenize estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT jeanlucroger estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT fabienspicher estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT jeromelacoux estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT davidroger estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT jacquesbaudry estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata
AT laurencehubertmoy estimatingcropparametersusingsentinel1and2datasetsandgeospatialfielddata