MHD WAVES IN THE COLLISIONAL PLASMA OF THE SOLAR CORONA AND TERRESTRIAL IONOSPHERE

We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersio...

Full description

Bibliographic Details
Main Authors: A.K. Nekrasov, V.A. Pilipenko
Format: Article
Language:English
Published: INFRA-M 2020-12-01
Series:Solar-Terrestrial Physics
Subjects:
Online Access:https://naukaru.ru/en/nauka/article/41322/view
Description
Summary:We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.
ISSN:2500-0535