Disentangled Autoencoder for Cross-Stain Feature Extraction in Pathology Image Analysis

A novel deep autoencoder architecture is proposed for the analysis of histopathology images. Its purpose is to produce a disentangled latent representation in which the structure and colour information are confined to different subspaces so that stain-independent models may be learned. For this, we...

Descripció completa

Dades bibliogràfiques
Autors principals: Helge Hecht, Mhd Hasan Sarhan, Vlad Popovici
Format: Article
Idioma:English
Publicat: MDPI AG 2020-09-01
Col·lecció:Applied Sciences
Matèries:
Accés en línia:https://www.mdpi.com/2076-3417/10/18/6427