Disentangled Autoencoder for Cross-Stain Feature Extraction in Pathology Image Analysis
A novel deep autoencoder architecture is proposed for the analysis of histopathology images. Its purpose is to produce a disentangled latent representation in which the structure and colour information are confined to different subspaces so that stain-independent models may be learned. For this, we...
Autors principals: | , , |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
MDPI AG
2020-09-01
|
Col·lecció: | Applied Sciences |
Matèries: | |
Accés en línia: | https://www.mdpi.com/2076-3417/10/18/6427 |