The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations

We present the explicit non‐recursive formulas for the Taylor series expansion coefficients for the functions Sn (t) defined as solutions of the Emden ‐ Fowler type equations x” = –nx 2n−1 with the initial conditions x(0) = 0, x‘(0) = 1, where n = 1,2,… Pateikiamos vadinamos Emdeno‐Faulerio lyg...

Full description

Bibliographic Details
Main Authors: A. Gritsans, F. Sadyrbaev
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2005-09-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9677
_version_ 1818381137946345472
author A. Gritsans
F. Sadyrbaev
author_facet A. Gritsans
F. Sadyrbaev
author_sort A. Gritsans
collection DOAJ
description We present the explicit non‐recursive formulas for the Taylor series expansion coefficients for the functions Sn (t) defined as solutions of the Emden ‐ Fowler type equations x” = –nx 2n−1 with the initial conditions x(0) = 0, x‘(0) = 1, where n = 1,2,… Pateikiamos vadinamos Emdeno‐Faulerio lygties x” = –nx 2n−1 pradinio uždavinio x(0) = 0, x‘(0) = 1,(n = 1,2,…) sprendiniu Sn (t) Teiloro eilute koeficientu išreikštines formules. Jos yra nerekursyvine. First Published Online: 14 Oct 2010
first_indexed 2024-12-14T02:29:48Z
format Article
id doaj.art-52a0752adc0a42e389ec510a3cfd8668
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-14T02:29:48Z
publishDate 2005-09-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-52a0752adc0a42e389ec510a3cfd86682022-12-21T23:20:17ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102005-09-0110310.3846/13926292.2005.9637285The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equationsA. Gritsans0F. Sadyrbaev1Daugavpils University , Parades str. 1, DaugavpilsInstitute of Mathematics and Computer Science , University of Latvia , Rainis blvd 29, RigaWe present the explicit non‐recursive formulas for the Taylor series expansion coefficients for the functions Sn (t) defined as solutions of the Emden ‐ Fowler type equations x” = –nx 2n−1 with the initial conditions x(0) = 0, x‘(0) = 1, where n = 1,2,… Pateikiamos vadinamos Emdeno‐Faulerio lygties x” = –nx 2n−1 pradinio uždavinio x(0) = 0, x‘(0) = 1,(n = 1,2,…) sprendiniu Sn (t) Teiloro eilute koeficientu išreikštines formules. Jos yra nerekursyvine. First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/9677Emden ‐ Fowler equationsTaylor series expansionlemniscatic sine
spellingShingle A. Gritsans
F. Sadyrbaev
The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
Mathematical Modelling and Analysis
Emden ‐ Fowler equations
Taylor series expansion
lemniscatic sine
title The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
title_full The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
title_fullStr The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
title_full_unstemmed The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
title_short The Taylor series expansion coefficients for solutions of the Emden‐Fowler type equations
title_sort taylor series expansion coefficients for solutions of the emden fowler type equations
topic Emden ‐ Fowler equations
Taylor series expansion
lemniscatic sine
url https://journals.vgtu.lt/index.php/MMA/article/view/9677
work_keys_str_mv AT agritsans thetaylorseriesexpansioncoefficientsforsolutionsoftheemdenfowlertypeequations
AT fsadyrbaev thetaylorseriesexpansioncoefficientsforsolutionsoftheemdenfowlertypeequations
AT agritsans taylorseriesexpansioncoefficientsforsolutionsoftheemdenfowlertypeequations
AT fsadyrbaev taylorseriesexpansioncoefficientsforsolutionsoftheemdenfowlertypeequations