Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted...

Full description

Bibliographic Details
Main Authors: Liz J. Valente, Brandon J. Aubrey, Marco J. Herold, Gemma L. Kelly, Lina Happo, Clare L. Scott, Andrea Newbold, Ricky W. Johnstone, David C.S. Huang, Lyubomir T. Vassilev, Andreas Strasser
Format: Article
Language:English
Published: Elsevier 2016-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716300377
Description
Summary:Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.
ISSN:2211-1247