Abundances and Transients from Neutron Star–White Dwarf Mergers

We systematically investigate the mergers of neutron star–white dwarf binaries from beginning to end, with a focus on the properties of the inflows and outflows in accretion disks and their electromagnetic emissions. Using population synthesis models, we determine a subset of these binaries in which...

Full description

Bibliographic Details
Main Authors: M. Alexander R. Kaltenborn, Chris L. Fryer, Ryan T. Wollaeger, Krzysztof Belczynski, Wesley Even, Chryssa Kouveliotou
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acf860
Description
Summary:We systematically investigate the mergers of neutron star–white dwarf binaries from beginning to end, with a focus on the properties of the inflows and outflows in accretion disks and their electromagnetic emissions. Using population synthesis models, we determine a subset of these binaries in which the white dwarf companion undergoes unstable mass transfer and complete tidal disruption, forming a large accretion disk around the neutron star. The material evolves according to a one-dimensional advection-dominated accretion-disk model with nuclear burning, neutrino emissions, and disk-surface wind ejection. The extreme dynamics of the entire process have proven difficult to analyze, and thus currently, the properties are poorly understood. The outflows from the mergers are iron- and nickel-rich, giving rise to optical and infrared emissions powered by the decay of the radioactive iron-type isotopes, calculated via the SuperNu light-curve code. We find these systems capable of powering bright, yet short-lived, optical transients with the potential to power gamma-ray bursts.
ISSN:1538-4357