MGD Dirac Stars

The method of geometric deformation (MGD) is here employed to study compact stellar configurations, which are solutions of the effective Einstein–Dirac coupled field equations on fluid branes. Non-linear, self-interacting, fermionic fields are then employed to derive MGD Dirac stars, whose propertie...

Full description

Bibliographic Details
Main Author: Roldão da Rocha
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/4/508
Description
Summary:The method of geometric deformation (MGD) is here employed to study compact stellar configurations, which are solutions of the effective Einstein–Dirac coupled field equations on fluid branes. Non-linear, self-interacting, fermionic fields are then employed to derive MGD Dirac stars, whose properties are analyzed and discussed. The MGD Dirac star maximal mass is shown to increase as a specific function of the spinor self-interaction coupling constant, in a realistic model involving the most strict phenomenological current bounds for the brane tension.
ISSN:2073-8994