Summary: | In this paper we study convolution properties of spirallike multivalent functions defined by using a differential operator and higher order derivatives. Using convolution product relations we determine necessary and sufficient conditions for multivalent functions to belong to these classes, and our results generalized many previous results obtained by different authors. We obtain convolution and inclusion properties for new subclasses of multivalent functions defined by using the Dziok-Srivatava operator. Moreover, using a result connected with the Briot-Bouquet differential subordination, we obtain an inclusion relation between some of these classes of functions.
|