New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)

A new method for multibeam echosounder (MBES) data analysis is presented with the aim of improving habitat mapping, especially when considering submerged aquatic vegetation (SAV). MBES data were acquired with 400 kHz in 1−8 m water depth with a spatial resolution in the decimeter scale. Th...

Full description

Bibliographic Details
Main Authors: Philipp Held, Jens Schneider von Deimling
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/9/5/235
_version_ 1818911690861838336
author Philipp Held
Jens Schneider von Deimling
author_facet Philipp Held
Jens Schneider von Deimling
author_sort Philipp Held
collection DOAJ
description A new method for multibeam echosounder (MBES) data analysis is presented with the aim of improving habitat mapping, especially when considering submerged aquatic vegetation (SAV). MBES data were acquired with 400 kHz in 1&#8722;8 m water depth with a spatial resolution in the decimeter scale. The survey area was known to be populated with the seagrass <i>Zostera marina</i> and the bathymetric soundings were highly influenced by this habitat. The depth values often coincide with the canopy of the seagrass. Instead of classifying the data with a digital terrain model and the given derivatives, we derive predictive features from the native point cloud of the MBES soundings in a similar way to terrestrial LiDAR data analysis. We calculated the eigenvalues to derive nine characteristic features, which include linearity, planarity, and sphericity. The features were calculated for each sounding within a cylindrical neighborhood of 0.5 m radius and holding 88 neighboring soundings, on average, during our survey. The occurrence of seagrass was ground-truthed by divers and aerial photography. A data model was constructed and we applied a random forest machine learning supervised classification to predict between the two cases of &#8220;seafloor&#8221; and &#8220;vegetation&#8221;. Prediction by linearity, planarity, and sphericity resulted in 88.5% prediction accuracy. After constructing the higher-order eigenvalue derivatives and having the nine features available, the model resulted in 96% prediction accuracy. This study outlines for the first time that valuable feature classes can be derived from MBES point clouds&#8212;an approach that could substantially improve bathymetric measurements and habitat mapping.
first_indexed 2024-12-19T23:02:43Z
format Article
id doaj.art-52c0c0ec9380414fb25a4c483209050e
institution Directory Open Access Journal
issn 2076-3263
language English
last_indexed 2024-12-19T23:02:43Z
publishDate 2019-05-01
publisher MDPI AG
record_format Article
series Geosciences
spelling doaj.art-52c0c0ec9380414fb25a4c483209050e2022-12-21T20:02:27ZengMDPI AGGeosciences2076-32632019-05-019523510.3390/geosciences9050235geosciences9050235New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)Philipp Held0Jens Schneider von Deimling1Institute of Geosciences at Kiel University, Marine Geophysics and Hydroacoustics, Otto-Hahn-Platz 1, 24148 Kiel, GermanyInstitute of Geosciences at Kiel University, Marine Geophysics and Hydroacoustics, Otto-Hahn-Platz 1, 24148 Kiel, GermanyA new method for multibeam echosounder (MBES) data analysis is presented with the aim of improving habitat mapping, especially when considering submerged aquatic vegetation (SAV). MBES data were acquired with 400 kHz in 1&#8722;8 m water depth with a spatial resolution in the decimeter scale. The survey area was known to be populated with the seagrass <i>Zostera marina</i> and the bathymetric soundings were highly influenced by this habitat. The depth values often coincide with the canopy of the seagrass. Instead of classifying the data with a digital terrain model and the given derivatives, we derive predictive features from the native point cloud of the MBES soundings in a similar way to terrestrial LiDAR data analysis. We calculated the eigenvalues to derive nine characteristic features, which include linearity, planarity, and sphericity. The features were calculated for each sounding within a cylindrical neighborhood of 0.5 m radius and holding 88 neighboring soundings, on average, during our survey. The occurrence of seagrass was ground-truthed by divers and aerial photography. A data model was constructed and we applied a random forest machine learning supervised classification to predict between the two cases of &#8220;seafloor&#8221; and &#8220;vegetation&#8221;. Prediction by linearity, planarity, and sphericity resulted in 88.5% prediction accuracy. After constructing the higher-order eigenvalue derivatives and having the nine features available, the model resulted in 96% prediction accuracy. This study outlines for the first time that valuable feature classes can be derived from MBES point clouds&#8212;an approach that could substantially improve bathymetric measurements and habitat mapping.https://www.mdpi.com/2076-3263/9/5/235habitat mappingsubmerged aquatic vegetationmultibeam echosounderpoint cloud
spellingShingle Philipp Held
Jens Schneider von Deimling
New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
Geosciences
habitat mapping
submerged aquatic vegetation
multibeam echosounder
point cloud
title New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
title_full New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
title_fullStr New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
title_full_unstemmed New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
title_short New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)
title_sort new feature classes for acoustic habitat mapping a multibeam echosounder point cloud analysis for mapping submerged aquatic vegetation sav
topic habitat mapping
submerged aquatic vegetation
multibeam echosounder
point cloud
url https://www.mdpi.com/2076-3263/9/5/235
work_keys_str_mv AT philippheld newfeatureclassesforacoustichabitatmappingamultibeamechosounderpointcloudanalysisformappingsubmergedaquaticvegetationsav
AT jensschneidervondeimling newfeatureclassesforacoustichabitatmappingamultibeamechosounderpointcloudanalysisformappingsubmergedaquaticvegetationsav