Rebuilding insight into the pathophysiology of Alzheimer's disease through new blood-brain barrier models

The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system. Blood-brain barrier breakdown is a common pathology in various neurological diseases, such as Alzheimer's disease, stroke, multiple sclerosis, a...

Full description

Bibliographic Details
Main Authors: Kinya Matsuo, Hideaki Nshihara
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2024-01-01
Series:Neural Regeneration Research
Subjects:
Online Access:http://www.nrronline.org/article.asp?issn=1673-5374;year=2024;volume=19;issue=9;spage=1954;epage=1960;aulast=
Description
Summary:The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system. Blood-brain barrier breakdown is a common pathology in various neurological diseases, such as Alzheimer's disease, stroke, multiple sclerosis, and Parkinson's disease. Traditionally, it has been considered a consequence of neuroinflammation or neurodegeneration, but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss. Thus, the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics. To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases, there is a growing demand for experimental models of human origin that allow for functional assessments. Recently, several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed. Especially in the Alzheimer's disease field, the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier. In this review, we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer's disease from pathological analyses, imaging studies, animal models, and stem cell sources. Additionally, we discuss the potential future directions for blood-brain barrier research.
ISSN:1673-5374