MicroRNA expression profiling reveals potential roles for microRNA in the liver during pigeon (Columba livia) development

The liver is the central organ for metabolism and influence the growth and development of the animals. To date, little is known about the microRNA (miRNA) in pigeon livers, particularly in different developmental stages. A comprehensive investigation into miRNA transcriptomes in livers across 3 pige...

Full description

Bibliographic Details
Main Authors: Xun Wang, Peiqi Yan, Lei Liu, Yi Luo, Ling Zhao, Haifeng Liu, Qianzi Tang, Keren Long, Long Jin, Jideng Ma, Anan Jiang, Xuewei Li, Mingzhou Li
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S003257912030691X
Description
Summary:The liver is the central organ for metabolism and influence the growth and development of the animals. To date, little is known about the microRNA (miRNA) in pigeon livers, particularly in different developmental stages. A comprehensive investigation into miRNA transcriptomes in livers across 3 pigeon developmental stages (1, 14, 28 d old) and an adult stage (2 y old) was performed by small RNA sequencing. We identified 312 known miRNA, 433 conserved miRNA, and 192 novel miRNA in pigeon livers. A set of differentially expressed (DE) miRNA in livers were screened out during pigeon development. This set of miRNA might be involved in hepatospecific phenotype and liver development. A Short Time-series Expression Miner analysis indicated significant expression variations in DE miRNA during liver development of pigeons. These DE miRNA with different expression patterns might play essential roles in response to growth factor, cell morphogenesis, and gland development, etc. Protein–protein interaction network and Molecular Complex Detection analysis identified several vital target genes (e.g., TNRC6B, FRS2, PTCH1, etc.) of DE miRNA, which is closely linked in liver development and enriched in PI3K cascade and regulation of growth. Our results expanded the repertoire of pigeon miRNA and may be of help in better understanding the mechanism of squab's rapid development from the perspective of liver development.
ISSN:0032-5791