Experimental and Numerical Simulation Studies on V-Shaped Bending of Aluminum/CFRP Laminates

With the increasing requirements of automotive lightweighting, metal/CFRP laminates are increasingly used. In this paper, Al/CFRP laminates were prepared using an integrated hot press curing method, and the optimum curing conditions were determined using the single-lap shear test at 130 °C for 45 mi...

Full description

Bibliographic Details
Main Authors: Hang Cheng, Zhiqiang Zhang, Mingwen Ren, Hongjie Jia
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/14/4939
Description
Summary:With the increasing requirements of automotive lightweighting, metal/CFRP laminates are increasingly used. In this paper, Al/CFRP laminates were prepared using an integrated hot press curing method, and the optimum curing conditions were determined using the single-lap shear test at 130 °C for 45 min. The effects of fiber lay-up, forming speed, and metal layer thickness on bending springback were investigated using the V-shaped bending test and Abaqus finite element analysis method. The results show that fiber lay-up has an important influence on springback. Among the five different fiber lay-ups (0° unidirectional, 90° unidirectional, 0° orthotropic, 90° orthotropic, and 45° orthotropic), the 45° orthotropic lay-up had the lowest springback rate of 1.11%. Increasing the thickness of the sheet metal can significantly reduce the resilience rate. As the sheet thickness increased from 2 mm to 3 mm, the springback of the 90° unidirectional lay-up decreased by 43%. Springback was not sensitive to forming speed, and the difference in springback was within 1% at different forming speeds. The damage behavior of the forming process was analyzed using the three-dimensional Hashin damage law with the Vumat subroutine and microscopic analysis. Fiber and resin damage under 45° orthotropic lay-up conditions was relatively small compared to fiber damage under 0° unidirectional lay-up and resin damage under 90° unidirectional lay-up.
ISSN:1996-1944