Structural and dielectric properties of sol–gel processed Ce-doped BaTi0.97Y0.03O3 ceramics
Structural and dielectric properties of Ce-doped BaTi0.97Y0.03O3 powders, with the chemical formulation (Ba1−xCex)(Ti(0.97−x/4)- Y0.03)O3 such as x = 0%, 1%, 3%, 5%, 7% and 9%, produced by the sol–gel method, have been investigated. X-ray diffraction analysis showed that Ce3+ ions incorporated Ba si...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
World Scientific Publishing
2021-02-01
|
Series: | Journal of Advanced Dielectrics |
Subjects: | |
Online Access: | http://www.worldscientific.com/doi/epdf/10.1142/S2010135X2150003X |
Summary: | Structural and dielectric properties of Ce-doped BaTi0.97Y0.03O3 powders, with the chemical formulation (Ba1−xCex)(Ti(0.97−x/4)- Y0.03)O3 such as x = 0%, 1%, 3%, 5%, 7% and 9%, produced by the sol–gel method, have been investigated. X-ray diffraction analysis showed that Ce3+ ions incorporated Ba sites until x= 7% indicating that this concentration represents a solubility limit of Ce3+ ions in BaTi0.97Y0.03O3 matrix. Scanning electron microscopy (SEM) analysis showed a decrease in grain size down to the same concentration of 7%. Raman spectroscopy analysis showed the appearance of A1g mode, which we attributed to the effect of incorporation of Ce3+ and Y3+ in BaTiO3 matrix. Dielectric measurements revealed that doping with cerium lowers the temperature of permittivity maximum at the ferroelectric-to-paraelectric transition (FPT) of the BaTi0.97Y0.03O3 sample, and reaches a value that should be below 40∘C for x= 9%. Moreover, the phenomenon of dielectric resonance was observed on all Ce-doped samples, which was not the case with other dopants as reported in the literature. |
---|---|
ISSN: | 2010-135X 2010-1368 |