Self-powered triboelectric nanogenerator sensor for detecting humidity level and monitoring ethanol variation in a simulated exhalation environment

Abstract Respiration stands as a vital process reflecting physiological and pathological human health status. Exhaled breath analysis offers a facile, non-invasive, swift, and cost-effective approach for diagnosing and monitoring diseases by detecting concentration changes of specific biomarkers. In...

Full description

Bibliographic Details
Main Authors: Nima Mohamadbeigi, Leyla Shooshtari, Somayeh Fardindoost, Mohaddese Vafaiee, Azam Iraji zad, Raheleh Mohammadpour
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-51862-6
Description
Summary:Abstract Respiration stands as a vital process reflecting physiological and pathological human health status. Exhaled breath analysis offers a facile, non-invasive, swift, and cost-effective approach for diagnosing and monitoring diseases by detecting concentration changes of specific biomarkers. In this study, we employed Polyethylene oxide/copper (I) oxide composite nanofibers (PCNFs), synthesized via the electrospinning method as the sensing material to measure ethanol levels (1–200 ppm) in an exhaled breath simulator environment. The integrated contact-separation triboelectric nanogenerator was utilized to power the self-powered PCNFs exhaled breath sensor. The PCNFs-based gas sensor demonstrates promising results with values of 0.9 and 3.2 for detecting 5 ppm and 200 ppm ethanol, respectively, in the presence of interfering gas at 90% relative humidity (RH). Notably, the sensor displayed remarkable ethanol selectivity, with ratios of 10:1 to methanol and 25:1 to acetone. Response and recovery times for 200 ppm ethanol at 90 RH% were rapid, at 2.7 s and 5.8 s, respectively. The PCNFs-based exhaled breath sensor demonstrated consistent and stable performance in practical conditions, showcasing its potential for integration into wearable devices. This self-powered breath sensor enabling continuous monitoring of lung cancer symptoms and facilitating compliance checks with legal alcohol consumption limits.
ISSN:2045-2322