Effect of Pauli repulsion and transfer on fusion

The effect of the Pauli exclusion principle on the nucleus-nucleus bare potential is studied using a new density-constrained extension of the Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a repulsion at short distance. The charge product dependence of this Pauli repulsion i...

Full description

Bibliographic Details
Main Authors: Simenel C., Godbey K., Umar A.S., Vo-Phuoc K., Dasgupta M., Hinde D. J., Simpson E. C.
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201716300055
Description
Summary:The effect of the Pauli exclusion principle on the nucleus-nucleus bare potential is studied using a new density-constrained extension of the Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a repulsion at short distance. The charge product dependence of this Pauli repulsion is investigated. Dynamical effects are then included in the potential with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In particular, isovector contributions to this potential are used to investigate the role of transfer on fusion, resulting in a lowering of the inner part of the potential for systems with positive Q-value transfer channels.
ISSN:2100-014X