The fine tuning of pain thresholds: a sophisticated double alarm system.

Two distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities,...

Full description

Bibliographic Details
Main Authors: Léon Plaghki, Céline Decruynaere, Paul Van Dooren, Daniel Le Bars
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2859063?pdf=render
_version_ 1818391121373429760
author Léon Plaghki
Céline Decruynaere
Paul Van Dooren
Daniel Le Bars
author_facet Léon Plaghki
Céline Decruynaere
Paul Van Dooren
Daniel Le Bars
author_sort Léon Plaghki
collection DOAJ
description Two distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities, namely Adelta- and C-fibers. In the light of a recent study in the rat, our objective was to develop an experimental paradigm in humans, based on the joint analysis of the stimulus and the response of the subject, to measure the thermal thresholds and latencies of pain elicited by Adelta- and C-fibers. For comparison, the same approach was applied to the sensation of warmth elicited by thermoreceptors. A CO(2) laser beam raised the temperature of the skin filmed by an infrared camera. The subject stopped the beam when he/she perceived pain. The thermal images were analyzed to provide four variables: true thresholds and latencies of pain triggered by heat via Adelta- and C-fibers. The psychophysical threshold of pain triggered by Adelta-fibers was always higher (2.5-3 degrees C) than that triggered by C-fibers. The initial skin temperature did not influence these thresholds. The mean conduction velocities of the corresponding fibers were 13 and 0.8 m/s, respectively. The triggering of pain either by C- or by Adelta-fibers was piloted by several factors including the low/high rate of stimulation, the low/high base temperature of the skin, the short/long peripheral nerve path and some pharmacological manipulations (e.g. Capsaicin). Warming a large skin area increased the pain thresholds. Considering the warmth detection gave a different picture: the threshold was strongly influenced by the initial skin temperature and the subjects detected an average variation of 2.7 degrees C, whatever the initial temperature. This is the first time that thresholds and latencies for pain elicited by both Adelta- and C-fibers from a given body region have been measured in the same experimental run. Such an approach illustrates the role of nociception as a "double level" and "double release" alarm system based on level detectors. By contrast, warmth detection was found to be based on difference detectors. It is hypothesized that pain results from a CNS build-up process resulting from population coding and strongly influenced by the background temperatures surrounding at large the stimulation site. We propose an alternative solution to the conventional methods that only measure a single "threshold of pain", without knowing which of the two systems is involved.
first_indexed 2024-12-14T05:08:29Z
format Article
id doaj.art-5305078efd4945f3b61c308cb172ea13
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-14T05:08:29Z
publishDate 2010-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-5305078efd4945f3b61c308cb172ea132022-12-21T23:16:03ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-01-0154e1026910.1371/journal.pone.0010269The fine tuning of pain thresholds: a sophisticated double alarm system.Léon PlaghkiCéline DecruynaerePaul Van DoorenDaniel Le BarsTwo distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities, namely Adelta- and C-fibers. In the light of a recent study in the rat, our objective was to develop an experimental paradigm in humans, based on the joint analysis of the stimulus and the response of the subject, to measure the thermal thresholds and latencies of pain elicited by Adelta- and C-fibers. For comparison, the same approach was applied to the sensation of warmth elicited by thermoreceptors. A CO(2) laser beam raised the temperature of the skin filmed by an infrared camera. The subject stopped the beam when he/she perceived pain. The thermal images were analyzed to provide four variables: true thresholds and latencies of pain triggered by heat via Adelta- and C-fibers. The psychophysical threshold of pain triggered by Adelta-fibers was always higher (2.5-3 degrees C) than that triggered by C-fibers. The initial skin temperature did not influence these thresholds. The mean conduction velocities of the corresponding fibers were 13 and 0.8 m/s, respectively. The triggering of pain either by C- or by Adelta-fibers was piloted by several factors including the low/high rate of stimulation, the low/high base temperature of the skin, the short/long peripheral nerve path and some pharmacological manipulations (e.g. Capsaicin). Warming a large skin area increased the pain thresholds. Considering the warmth detection gave a different picture: the threshold was strongly influenced by the initial skin temperature and the subjects detected an average variation of 2.7 degrees C, whatever the initial temperature. This is the first time that thresholds and latencies for pain elicited by both Adelta- and C-fibers from a given body region have been measured in the same experimental run. Such an approach illustrates the role of nociception as a "double level" and "double release" alarm system based on level detectors. By contrast, warmth detection was found to be based on difference detectors. It is hypothesized that pain results from a CNS build-up process resulting from population coding and strongly influenced by the background temperatures surrounding at large the stimulation site. We propose an alternative solution to the conventional methods that only measure a single "threshold of pain", without knowing which of the two systems is involved.http://europepmc.org/articles/PMC2859063?pdf=render
spellingShingle Léon Plaghki
Céline Decruynaere
Paul Van Dooren
Daniel Le Bars
The fine tuning of pain thresholds: a sophisticated double alarm system.
PLoS ONE
title The fine tuning of pain thresholds: a sophisticated double alarm system.
title_full The fine tuning of pain thresholds: a sophisticated double alarm system.
title_fullStr The fine tuning of pain thresholds: a sophisticated double alarm system.
title_full_unstemmed The fine tuning of pain thresholds: a sophisticated double alarm system.
title_short The fine tuning of pain thresholds: a sophisticated double alarm system.
title_sort fine tuning of pain thresholds a sophisticated double alarm system
url http://europepmc.org/articles/PMC2859063?pdf=render
work_keys_str_mv AT leonplaghki thefinetuningofpainthresholdsasophisticateddoublealarmsystem
AT celinedecruynaere thefinetuningofpainthresholdsasophisticateddoublealarmsystem
AT paulvandooren thefinetuningofpainthresholdsasophisticateddoublealarmsystem
AT daniellebars thefinetuningofpainthresholdsasophisticateddoublealarmsystem
AT leonplaghki finetuningofpainthresholdsasophisticateddoublealarmsystem
AT celinedecruynaere finetuningofpainthresholdsasophisticateddoublealarmsystem
AT paulvandooren finetuningofpainthresholdsasophisticateddoublealarmsystem
AT daniellebars finetuningofpainthresholdsasophisticateddoublealarmsystem