Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.

This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV) path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the trad...

Full description

Bibliographic Details
Main Authors: Zengliang Han, Dongqing Wang, Feng Liu, Zhiyong Zhao
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5528885?pdf=render
Description
Summary:This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV) path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.
ISSN:1932-6203