MHD supersonic flow control: OpenFOAM simulation

MHD flow control is a relevant topic in today’s aerospace engineering. An OpenFOAM density-based solver that is capable of handling MHD supersonic flow problems with constant magnetic field is developed. The proposed solver is based on Balbas-Tadmor central difference schemes. This solver can be app...

Full description

Bibliographic Details
Main Authors: A. I. Ryakhovskiy, A. A. Schmidt
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/34
_version_ 1818665889420017664
author A. I. Ryakhovskiy
A. A. Schmidt
author_facet A. I. Ryakhovskiy
A. A. Schmidt
author_sort A. I. Ryakhovskiy
collection DOAJ
description MHD flow control is a relevant topic in today’s aerospace engineering. An OpenFOAM density-based solver that is capable of handling MHD supersonic flow problems with constant magnetic field is developed. The proposed solver is based on Balbas-Tadmor central difference schemes. This solver can be applied to studying the potential of MHD flow control systems for atmospheric entry vehicles. A supersonic flow around a spherically blunt cone both with and without MHD interaction is studied. Gases with thermodynamic parameters characteristic for Earth’s and Martian atmospheres are considered. The results show visible effect of magnetic field on surface temperature of the body. The differences between shock standoff distances and general shockwave configurations of MHD and non-MHD flow are also apparent. The solution is stable for Stuart number below 0.2. Conditional instability of the solver can be attributed to the MHD term’s contribution to the local speed of sound and can be avoided by taking it into account. The developed application has proven the suitability of the used schemes for resolving steep gradients in MHD supersonic flow problems. The study itself has shown theoretical possibility of studying the MHD flow control using OpenFOAM. Further research may include an effort to stabilize the solver and to enhance the mathematical model of the flow.
first_indexed 2024-12-17T05:55:48Z
format Article
id doaj.art-531b35cdeeb741e6964cd456d9bce355
institution Directory Open Access Journal
issn 2079-8156
2220-6426
language English
last_indexed 2024-12-17T05:55:48Z
publishDate 2018-10-01
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
record_format Article
series Труды Института системного программирования РАН
spelling doaj.art-531b35cdeeb741e6964cd456d9bce3552022-12-21T22:01:03ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-0128119720610.15514/ISPRAS-2016-28(1)-1134MHD supersonic flow control: OpenFOAM simulationA. I. Ryakhovskiy0A. A. Schmidt1ФТИ им. ИоффеФТИ им. ИоффеMHD flow control is a relevant topic in today’s aerospace engineering. An OpenFOAM density-based solver that is capable of handling MHD supersonic flow problems with constant magnetic field is developed. The proposed solver is based on Balbas-Tadmor central difference schemes. This solver can be applied to studying the potential of MHD flow control systems for atmospheric entry vehicles. A supersonic flow around a spherically blunt cone both with and without MHD interaction is studied. Gases with thermodynamic parameters characteristic for Earth’s and Martian atmospheres are considered. The results show visible effect of magnetic field on surface temperature of the body. The differences between shock standoff distances and general shockwave configurations of MHD and non-MHD flow are also apparent. The solution is stable for Stuart number below 0.2. Conditional instability of the solver can be attributed to the MHD term’s contribution to the local speed of sound and can be avoided by taking it into account. The developed application has proven the suitability of the used schemes for resolving steep gradients in MHD supersonic flow problems. The study itself has shown theoretical possibility of studying the MHD flow control using OpenFOAM. Further research may include an effort to stabilize the solver and to enhance the mathematical model of the flow.https://ispranproceedings.elpub.ru/jour/article/view/34магнитная гидродинамикасверхзвуковые течениячисленное моделированиеметод конечных элементов в гидрогазодинамикечисленное моделированиеударные волны в газодинамике
spellingShingle A. I. Ryakhovskiy
A. A. Schmidt
MHD supersonic flow control: OpenFOAM simulation
Труды Института системного программирования РАН
магнитная гидродинамика
сверхзвуковые течения
численное моделирование
метод конечных элементов в гидрогазодинамике
численное моделирование
ударные волны в газодинамике
title MHD supersonic flow control: OpenFOAM simulation
title_full MHD supersonic flow control: OpenFOAM simulation
title_fullStr MHD supersonic flow control: OpenFOAM simulation
title_full_unstemmed MHD supersonic flow control: OpenFOAM simulation
title_short MHD supersonic flow control: OpenFOAM simulation
title_sort mhd supersonic flow control openfoam simulation
topic магнитная гидродинамика
сверхзвуковые течения
численное моделирование
метод конечных элементов в гидрогазодинамике
численное моделирование
ударные волны в газодинамике
url https://ispranproceedings.elpub.ru/jour/article/view/34
work_keys_str_mv AT airyakhovskiy mhdsupersonicflowcontrolopenfoamsimulation
AT aaschmidt mhdsupersonicflowcontrolopenfoamsimulation