Therapeutic Effects of Aβ-Specific Regulatory T Cells in Alzheimer’s Disease: A Study in 5xFAD Mice

The aging global population is placing an increasing burden on healthcare systems, and the social impact of Alzheimer’s disease (AD) is on the rise. However, the availability of safe and effective treatments for AD remains limited. Adoptive Treg therapy has been explored for treating neurodegenerati...

Full description

Bibliographic Details
Main Authors: Seon-Young Park, Juwon Yang, Hyejin Yang, Inhee Cho, Jae Yoon Kim, Hyunsu Bae
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/25/2/783
Description
Summary:The aging global population is placing an increasing burden on healthcare systems, and the social impact of Alzheimer’s disease (AD) is on the rise. However, the availability of safe and effective treatments for AD remains limited. Adoptive Treg therapy has been explored for treating neurodegenerative diseases, including AD. To facilitate the clinical application of Treg therapy, we developed a Treg preparation protocol and highlighted the therapeutic effects of Tregs in 5xFAD mice. CD4<sup>+</sup>CD25<sup>+</sup> Tregs, isolated after Aβ stimulation and expanded using a G-rex plate with a gas-permeable membrane, were adoptively transferred into 5xFAD mice. Behavioral analysis was conducted using Y-maze and passive avoidance tests. Additionally, we measured levels of Aβ, phosphorylated tau (pTAU), and nitric oxide synthase 2 (NOS2) in the hippocampus. Real-time RT-PCR was employed to assess the mRNA levels of pro- and anti-inflammatory markers. Our findings indicate that Aβ-specific Tregs not only improved cognitive function but also reduced Aβ and pTAU accumulation in the hippocampus of 5xFAD mice. They also inhibited microglial neuroinflammation. These effects were observed at doses as low as 1.5 × 10<sup>3</sup> cells/head. Collectively, our results demonstrate that Aβ-specific Tregs can mitigate AD pathology in 5xFAD mice.
ISSN:1661-6596
1422-0067