Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride
Microplastics (MPs) are an issue of prime environmental concern globally. The abundance of MP particles in the informal open solid waste landfill soil was evaluated showing 180–1120 MP particles per kg of soil. Moisture content (MC), electrical conductivity (EC) and pH of the MP-contaminated soil co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IWA Publishing
2023-01-01
|
Series: | Water Science and Technology |
Subjects: | |
Online Access: | http://wst.iwaponline.com/content/87/1/115 |
_version_ | 1797903731290800128 |
---|---|
author | S. Mahesh Nisarga K. Gowda Sahana Mahesh |
author_facet | S. Mahesh Nisarga K. Gowda Sahana Mahesh |
author_sort | S. Mahesh |
collection | DOAJ |
description | Microplastics (MPs) are an issue of prime environmental concern globally. The abundance of MP particles in the informal open solid waste landfill soil was evaluated showing 180–1120 MP particles per kg of soil. Moisture content (MC), electrical conductivity (EC) and pH of the MP-contaminated soil compared to the baseline showed 2.96% MC, 187–441 μS/cm EC and 6.94 pH. Morphology of extracted MPs in SEM showed particle fragmentation as film fragments (13.7%), fragments (56.1%), fibres (26.4%) and foam (3.8%). EDS results showed Carbon 71.8% and 24.5% oxygen with traces of Na, Al, Si and Cl−. FTIR of field obtained MPs identified were polyethylene and polypropylene. The association of MP particles with COD and chloride was discovered. MP particles of Low-density Polyethylene of size of 1 mm × 1 mm and thickness 25 μm up to 20 numbers showed no effect adding to the COD values. The COD values increased with increase in MP particle numbers. Similarly, chloride associations with MP particles showed an increase in MP particles reducing chloride values by 31% in landfill runoff water. It is interpreted that MP particle disintegration into nano-sized plastics (NPs) in the soil/runoff water can greatly increase the COD values and impair the salt mass balance.
HIGHLIGHTS
Municipal urban informal landfill soil was evaluated for abundance of MP particles.;
The associated environmental parameters like pH, EC, TDS were evaluated.;
SEM, EDS, FT-IR were used to understand the analytics and morphology of the extracted MPs.;
MP associations with COD and chloride are established for the first time.; |
first_indexed | 2024-04-10T09:37:29Z |
format | Article |
id | doaj.art-53365879e03c4189a3e16ba478823bbe |
institution | Directory Open Access Journal |
issn | 0273-1223 1996-9732 |
language | English |
last_indexed | 2024-04-10T09:37:29Z |
publishDate | 2023-01-01 |
publisher | IWA Publishing |
record_format | Article |
series | Water Science and Technology |
spelling | doaj.art-53365879e03c4189a3e16ba478823bbe2023-02-17T16:42:18ZengIWA PublishingWater Science and Technology0273-12231996-97322023-01-0187111512910.2166/wst.2022.412412Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chlorideS. Mahesh0Nisarga K. Gowda1Sahana Mahesh2 Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University (Formerly SJCE), JSSTI Campus, Mysuru, Karnataka State 570006, India Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University (Formerly SJCE), JSSTI Campus, Mysuru, Karnataka State 570006, India Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University (Formerly SJCE), JSSTI Campus, Mysuru, Karnataka State 570006, India Microplastics (MPs) are an issue of prime environmental concern globally. The abundance of MP particles in the informal open solid waste landfill soil was evaluated showing 180–1120 MP particles per kg of soil. Moisture content (MC), electrical conductivity (EC) and pH of the MP-contaminated soil compared to the baseline showed 2.96% MC, 187–441 μS/cm EC and 6.94 pH. Morphology of extracted MPs in SEM showed particle fragmentation as film fragments (13.7%), fragments (56.1%), fibres (26.4%) and foam (3.8%). EDS results showed Carbon 71.8% and 24.5% oxygen with traces of Na, Al, Si and Cl−. FTIR of field obtained MPs identified were polyethylene and polypropylene. The association of MP particles with COD and chloride was discovered. MP particles of Low-density Polyethylene of size of 1 mm × 1 mm and thickness 25 μm up to 20 numbers showed no effect adding to the COD values. The COD values increased with increase in MP particle numbers. Similarly, chloride associations with MP particles showed an increase in MP particles reducing chloride values by 31% in landfill runoff water. It is interpreted that MP particle disintegration into nano-sized plastics (NPs) in the soil/runoff water can greatly increase the COD values and impair the salt mass balance. HIGHLIGHTS Municipal urban informal landfill soil was evaluated for abundance of MP particles.; The associated environmental parameters like pH, EC, TDS were evaluated.; SEM, EDS, FT-IR were used to understand the analytics and morphology of the extracted MPs.; MP associations with COD and chloride are established for the first time.;http://wst.iwaponline.com/content/87/1/115cod and chloride associations with mpsedslandfillldpemicroplasticssem |
spellingShingle | S. Mahesh Nisarga K. Gowda Sahana Mahesh Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride Water Science and Technology cod and chloride associations with mps eds landfill ldpe microplastics sem |
title | Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride |
title_full | Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride |
title_fullStr | Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride |
title_full_unstemmed | Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride |
title_short | Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride |
title_sort | identification of microplastics from urban informal solid waste landfill soil mp associations with cod and chloride |
topic | cod and chloride associations with mps eds landfill ldpe microplastics sem |
url | http://wst.iwaponline.com/content/87/1/115 |
work_keys_str_mv | AT smahesh identificationofmicroplasticsfromurbaninformalsolidwastelandfillsoilmpassociationswithcodandchloride AT nisargakgowda identificationofmicroplasticsfromurbaninformalsolidwastelandfillsoilmpassociationswithcodandchloride AT sahanamahesh identificationofmicroplasticsfromurbaninformalsolidwastelandfillsoilmpassociationswithcodandchloride |