Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes
A conventional MIMO system is designed consisting of 4 antenna elements at both the receiver and transmitter ends. Different kinds of signal detection techniques, namely, zero forcing (ZF), minimum mean square error (MMSE) and beamforming (BF), are used at the receiver end for signal detection. The...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Riga Technical University Press
2017-12-01
|
| Series: | Electrical, Control and Communication Engineering |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/ecce-2017-0010 |
| _version_ | 1826907335896858624 |
|---|---|
| author | Kumar Arun Vardhan Piyush |
| author_facet | Kumar Arun Vardhan Piyush |
| author_sort | Kumar Arun |
| collection | DOAJ |
| description | A conventional MIMO system is designed consisting of 4 antenna elements at both the receiver and transmitter ends. Different kinds of signal detection techniques, namely, zero forcing (ZF), minimum mean square error (MMSE) and beamforming (BF), are used at the receiver end for signal detection. The performance of the system is analyzed by calculating BER vs SNR for each of the above techniques separately. The present work has been thoroughly analyzed and implemented using MATLAB. On the basis of the results obtained, it is summarized that as the values of SNR increase, BER decreases for ZF and MMSE and it almost vanishes to zero even for low SNR values if BF is used. Although ZF and MMSE are suitable for designing a conventional MIMO system with 4 antenna elements, it becomes too difficult for a large number of antenna elements due to its complexity of calculating the inverse of a (N × N) matrix. Based on the results analyzed so far, it is concluded that beamforming (BF) is a suitable technique for designing a system that has a large number of antenna elements at the base station. A further improved system with enhanced performance regarding lower BER for even smaller values of SNR is designed in the present study, consisting of 8 antennas at the base station. The results obtained are enthusiasm-provoking and encouraging for further studies to develop a concept for next-generation wireless communication systems with an optimum design. |
| first_indexed | 2024-04-13T20:52:33Z |
| format | Article |
| id | doaj.art-534229240465437e9c7eaf8d3765060c |
| institution | Directory Open Access Journal |
| issn | 2255-9159 |
| language | English |
| last_indexed | 2025-02-17T09:04:43Z |
| publishDate | 2017-12-01 |
| publisher | Riga Technical University Press |
| record_format | Article |
| series | Electrical, Control and Communication Engineering |
| spelling | doaj.art-534229240465437e9c7eaf8d3765060c2025-01-02T16:35:58ZengRiga Technical University PressElectrical, Control and Communication Engineering2255-91592017-12-01131697410.1515/ecce-2017-0010ecce-2017-0010Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection SchemesKumar Arun0Vardhan Piyush1Assistant Professor, Department of ECE, JECRC University, Jaipur, IndiaDepartment of ECE, JECRC University, Jaipur, IndiaA conventional MIMO system is designed consisting of 4 antenna elements at both the receiver and transmitter ends. Different kinds of signal detection techniques, namely, zero forcing (ZF), minimum mean square error (MMSE) and beamforming (BF), are used at the receiver end for signal detection. The performance of the system is analyzed by calculating BER vs SNR for each of the above techniques separately. The present work has been thoroughly analyzed and implemented using MATLAB. On the basis of the results obtained, it is summarized that as the values of SNR increase, BER decreases for ZF and MMSE and it almost vanishes to zero even for low SNR values if BF is used. Although ZF and MMSE are suitable for designing a conventional MIMO system with 4 antenna elements, it becomes too difficult for a large number of antenna elements due to its complexity of calculating the inverse of a (N × N) matrix. Based on the results analyzed so far, it is concluded that beamforming (BF) is a suitable technique for designing a system that has a large number of antenna elements at the base station. A further improved system with enhanced performance regarding lower BER for even smaller values of SNR is designed in the present study, consisting of 8 antennas at the base station. The results obtained are enthusiasm-provoking and encouraging for further studies to develop a concept for next-generation wireless communication systems with an optimum design.https://doi.org/10.1515/ecce-2017-0010bit error rate (ber)beamforming (bf)mimo systemminimum mean square error (mmse)signal to noise ratio (snr)zero forcing (zf) |
| spellingShingle | Kumar Arun Vardhan Piyush Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes Electrical, Control and Communication Engineering bit error rate (ber) beamforming (bf) mimo system minimum mean square error (mmse) signal to noise ratio (snr) zero forcing (zf) |
| title | Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes |
| title_full | Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes |
| title_fullStr | Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes |
| title_full_unstemmed | Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes |
| title_short | Design, Simulation & Concept Verification of 4 × 4, 8 × 8 MIMO With ZF, MMSE and BF Detection Schemes |
| title_sort | design simulation concept verification of 4 4 8 8 mimo with zf mmse and bf detection schemes |
| topic | bit error rate (ber) beamforming (bf) mimo system minimum mean square error (mmse) signal to noise ratio (snr) zero forcing (zf) |
| url | https://doi.org/10.1515/ecce-2017-0010 |
| work_keys_str_mv | AT kumararun designsimulationconceptverificationof4488mimowithzfmmseandbfdetectionschemes AT vardhanpiyush designsimulationconceptverificationof4488mimowithzfmmseandbfdetectionschemes |