Tricyano-Methylene-Pyridine Based High-Performance Aggregation-Induced Emission Photosensitizer for Imaging and Photodynamic Therapy

Photosensitizers equipped with high reactive oxygen species (ROS) generation capability and bright emission are essential for accurate tumor imaging and precise photodynamic therapy (PDT). However, traditional aggregation-caused quenching (ACQ) photosensitizers cannot simultaneously produce desirabl...

Full description

Bibliographic Details
Main Authors: Xupeng Wu, Zhirong Zhu, Zhenxing Liu, Xiangyu Li, Tijian Zhou, Xiaolei Zhao, Yuwei Wang, Yiqi Shi, Qianqian Yu, Wei-Hong Zhu, Qi Wang
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/22/7981
Description
Summary:Photosensitizers equipped with high reactive oxygen species (ROS) generation capability and bright emission are essential for accurate tumor imaging and precise photodynamic therapy (PDT). However, traditional aggregation-caused quenching (ACQ) photosensitizers cannot simultaneously produce desirable ROS and bright fluorescence, resulting in poor image-guided therapy effect. Herein, we report an aggregation-induced emission (AIE) photosensitizer TCM-Ph with a strong donor–π–acceptor (D–π–A) structure, which greatly separates the HOMO–LUMO distribution and reduces the Δ<i>E</i><sub>ST</sub>, thereby increasing the number of triplet excitons and producing more ROS. The AIE photosensitizer TCM-Ph has bright near-infrared emission, as well as a higher ROS generation capacity than the commercial photosensitizers Bengal Rose (RB) and Chlorine e6 (Ce6), and can effectively eliminate cancer cells under image guidance. Therefore, the AIE photosensitizer TCM-Ph has great potential to replace the commercial photosensitizers.
ISSN:1420-3049