High sensitivity ultraviolet graphene-metamaterial integrated electro-optic modulator enhanced by superlubricity

Ultraviolet (UV) electro-optic modulation system based on graphene-plasmonic metamaterials nanomechanical system (NEMS) with superlubricity is investigated. Due to the strong optical absorption intensity of graphene in the UV region and the combination of metamaterial structure based on surface plas...

Full description

Bibliographic Details
Main Authors: Xu Yanli, Zhang Chuan, Li Weimin, Li Rong, Liu Jiangtao, Liu Ze, Wu Zhenhua
Format: Article
Language:English
Published: De Gruyter 2022-07-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2022-0185
Description
Summary:Ultraviolet (UV) electro-optic modulation system based on graphene-plasmonic metamaterials nanomechanical system (NEMS) with superlubricity is investigated. Due to the strong optical absorption intensity of graphene in the UV region and the combination of metamaterial structure based on surface plasmons, the modulation depth of the UV NEMS electro-optic modulator approaches as high as 8.5 times compared to the counterpart modulator in visible light region. Meanwhile, the superlubricity significantly reduces the power consumption of the UV electro-optic modulation system due to its extremely low friction coefficient. It also significantly increases the response speed of the modulator, with response time down to nanoseconds. The modulation voltage can be equal to or less than 150 mV. The proposed electro-optic modulation system has a simple structure and high sensitivity, which is supposed to have important applications in UV optoelectronic devices and systems.
ISSN:2192-8614