Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface‐Enhanced Raman Spectroscopy

Abstract Controlling the selective one‐to‐one conjugation of RNA with nanoparticles is vital for future applications of RNA nanotechnology. Here, the monofunctionalization of a gold nanoparticle (AuNP) with a single copy of RNA is developed for ultrasensitive microRNA‐155 quantification using electr...

Full description

Bibliographic Details
Main Authors: Taek Lee, Mohsen Mohammadniaei, Hui Zhang, Jinho Yoon, Hye Kyu Choi, Sijin Guo, Peixuan Guo, Jeong‐Woo Choi
Format: Article
Language:English
Published: Wiley 2020-02-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.201902477
Description
Summary:Abstract Controlling the selective one‐to‐one conjugation of RNA with nanoparticles is vital for future applications of RNA nanotechnology. Here, the monofunctionalization of a gold nanoparticle (AuNP) with a single copy of RNA is developed for ultrasensitive microRNA‐155 quantification using electrochemical surface‐enhanced Raman spectroscopy (EC‐SERS). A single AuNP is conjugated with one copy of the packaging RNA (pRNA) three‐way junction (RNA 3WJ). pRNA 3WJ containing one strand of the 3WJ is connected to a Sephadex G100 aptamer and a biotin group at each arm (SEPapt/3WJ/Bio) which is then immobilized to the Sephadex G100 resin. The resulting complex is connected to streptavidin‐coated AuNP (STV/AuNP). Next, the STV/AuNP–Bio/3WJa is purified and reassembled with another 3WJ to form a single‐labeled 3WJ/AuNP. Later, the monoconjugate is immobilized onto the AuNP‐electrodeposited indium tin oxide coated substrate for detecting microRNA‐155 based on EC‐SERS. Application of an optimum potential of +0.2 V results in extraordinary amplification (≈7 times) of methylene blue (reporter) SERS signal compared to the normal SERS signal. As a result, a highly sensitive detection of 60 × 10−18 m microRNA‐155 in 1 h in serum based on monoconjugated AuNP/RNA is achieved. Thus, the monofunctionalization of RNA onto nanoparticle can provide a new methodology for biosensor construction and diverse RNA nanotechnology development.
ISSN:2198-3844