Investigating a Renewable-Resource-Targeting Mobile Aquaculture System Using Route Optimization Based on Optimal Foraging Theory

Aquaculture systems require careful consideration of location, which determines water conditions, pollution impacts, and hazardous conditions. Mobility may be able to address these factors while also supporting the targeting of renewable energy sources such as wind, wave, and solar power throughout...

Full description

Bibliographic Details
Main Authors: Jeff Grasberger, Dominic Forbush
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/11/2123
Description
Summary:Aquaculture systems require careful consideration of location, which determines water conditions, pollution impacts, and hazardous conditions. Mobility may be able to address these factors while also supporting the targeting of renewable energy sources such as wind, wave, and solar power throughout the year. In this paper, a purpose-built mobile aquaculture ship is identified and modeled with a combination of renewable energy harvesting capabilities as a case study with the objective of assessing the potential benefits of targeting high renewable energy potentials to power aquaculture operations. A route optimization algorithm is created and tuned to simulate the mobility of the aquaculture platform and cost-basis comparisons are made to a stationary system. The small spatial variability in renewable energy potential when combining multiple resources significantly limits the benefits of a mobile, renewable-targeting aquaculture system. On the other hand, the consistent energy harvest from a blend of renewable energy types (13 kW installed wind capacity, 661 m<sup>2</sup> installed solar, and 1 m characteristic width wave-energy converter) suggests that the potential benefits of a mobile platform for offshore aquaculture (mitigation of environmental and social concerns, any potential positive impact on yields, hazard avoidance, etc.) can likely be pursued without significant increases in energy harvester costs.
ISSN:2077-1312